簡易檢索 / 詳目顯示

研究生: 陳致銘
Chen, Chih-Ming
論文名稱: 天然物 (±)-Isopalhinine A、(±)-Palhinine A 與 (±)-Palhinine D 的仿生合成
Biomimetic Syntheses of (±)-Isopalhinine A, (±)-Palhinine A and (±)-Palhinine D
指導教授: 謝興邦
Hsieh, Hsing-Pang
口試委員: 汪炳鈞
Uang, Biing-Jiun
林俊成
Lin, Chun-Cheng
陳建添
Chen, Chien-Tien
王志偉
Ong, Chi-Wi
朱延和
Chu, Yen-Ho
吳學亮
Wu, Hsyueh-Liang
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 439
中文關鍵詞: 石松生物鹼天然物全合成仿生合成掩飾鄰苯醌醯基自由基環化反應異扭曲烷仿生中間體
外文關鍵詞: palhinine, biomimetic synthesis, isotwistane, 9-membered azonane ring, Diels-Alder reaction, acyl radical cyclization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Palhinine 生物鹼是一類由異扭曲烷與含氮九員雜環構成核心結構的獨特石松生物鹼,它複雜的5/6/6/9 四環結構與5/6/6/6/7 五環結構,以及異扭曲烷上C4與C12 的兩個相鄰四級碳,對於化學合成來說是一大挑戰。我們經由與其他研究團隊不同的合成策略,在合成初期既利用簡單的SN2 環化反應建立含氮九員雜環,避免跨環張力造成的合環問題;接著,利用掩飾鄰苯醌進行具有位置及立體選擇性的 Diels-Alder 反應得到雙環[2.2.2]辛烯酮骨架,不僅建立了6/6/9 三環結構,更引入了天然物所需的相對立體化學;然後,經由硫醇輔助自由基環化反應建立最後一個五員環,得到5/6/6/9 四環仿生中間體;最後,經由仿生合成途徑,快速地由仿生中間體合成出天然物 isopalhinine A、palhinine A 及 palhinine D。


    Palhinine alkaloids, a novel Lycopodium alkaloid family, are structurally featured by the unique isotwistane framework with 9-membered azonane ring. The distinctive 5/6/6/9 or 5/6/6/6/7 skeleton with two vicinal quaternary centers of C4 and C12 of isotwistane skeleton has attracted much interest in the synthetic community. Herein, we described a biomimetic synthetic strategy for the total synthesis of isopalhinine A, palhinine A, and palhinine D from a 5/6/6/9 tetracyclic common intermediate. Key steps for the synthesis of the core 5/6/6/9 tetracyclic skeleton for palhinine alkaloids include (a) an early-stage direct SN2 cyclization to form 9-membered azonane ring to minimize the transannular strain, (b) a regio- and stereo-selective Diels-Alder reaction to furnish 6/6/9 tricyclic structure and established desired stereochemistry, and (c) a thio-mediated acyl radical cyclization to complete 5/6/6/9 tetracyclic core architecture.

    目錄 中文摘要 I 英文摘要 II 謝  誌 III 目  錄 V 圖 目 錄 XII 表 目 錄 XIV 流程目錄 XV 縮寫對照表 XVIII 第一章 緒論 1 第一節 石松生物鹼與 palhinine 生物鹼 1 第二節 Palhinine 生物鹼的合成研究 5 1.2.1 厙學功教授利用掩飾鄰苯醌進行分子內 Diels-Alder 反應及自由基環化反應合成異扭曲烷骨架 6 1.2.2 樊春安教授利用分子內 Diels-Alder 反應一步建立異扭曲烷骨架 9 1.2.3 Rychnovsky 教授利用不同的反應溶劑合成不同的異扭曲烷骨架 10 1.2.4 Maier 教授利用骨牌式 Michael 加成反應及分子內醛醇反應合成異扭曲烷骨架 11 1.2.5 厙學功教授利用掩飾鄰苯醌中間體進行分子內 Diels-Alder 反應合成 6/6/9 三環骨架 13 1.2.6 樊春安教授的輔助環建構/解構合成策略 14 第三節 仿生合成與仿生中間體的構思 19 第四節 雙環[2.2.2]辛酮結構的合成構思 23 1.4.1 掩飾鄰苯醌的分子間 Diels-Alder 反應 24 1.4.2 掩飾鄰苯醌的分子內 Diels-Alder 反應 25 第五節 逆合成分析 28 第二章 結果與討論 31 第一節 Palhinine A 的路徑C研究結果 31 2.1.1 Palhinine A 的逆合成分析 31 2.1.2 溴化合物93的合成 32 2.1.3 二級胺化合物85的合成 32 2.1.4 醛化合物99的合成 34 第二節 Palhinine 生物鹼的仿生合成途徑與仿生中間體的路徑C逆合成分析 41 2.2.1 Palhinine 生物鹼的仿生合成途徑 41 2.2.2 仿生中間體的路徑C逆合成分析 42 第三節 仿生中間體的路徑C研究結果 43 2.3.1 醛化合物116的合成 43 2.3.2 2-甲氧基苯酚化合物113的合成 46 2.3.3 三環化合物129的合成 47 2.3.4 含溴三環化合物146的合成 51 2.3.5 掩飾鄰苯醌的六員環分子內 Diels-Alder 反應 54 2.3.6 六員環分子內 Diels-Alder 反應的模型研究 56 2.3.7 三環化合物176的合成 61 第四節 仿生中間體的路徑B研究結果 65 2.4.1 2,3-二烷基苯酚的氧化去芳香化反應/分子內 Diels-Alder 反應的模型研究 65 2.4.2 Morita-Baylis-Hillman 產物190與193的合成 66 2.4.3 Morita-Baylis-Hillman 產物199的合成 70 第五節 仿生中間體的路徑D研究成果 74 2.5.1 Palhinine 生物鹼的路徑D逆合成分析 74 2.5.2 二矽醚化合物213的合成與合成步驟最佳化 75 2.5.3 以SN2環化反應建立含氮九員雜環 78 2.5.4  利用掩飾鄰苯醌中間體進行 Diels-Alder 反應建立6/6/9三環骨架 82 2.5.5  以自由基環化反應建立5/6/6/9四環核心骨架與仿生中間體 89 第六節 天然物 isopalhinine A、palhinine A 及 palhinine D 的仿生合成與結構鑑定 101 2.6.1  天然物 isopalhinine A、palhinine A 及 palhinine D 的仿生合成 101 2.6.2  Isopalhinine A、palhinine A 及 palhinine D 的光譜比對與結構鑑定 103 第三章 結論 118 第四章 實驗部分 121 第一節 一般實驗方法 121 第二節 Palhinine A 的路徑C之合成步驟與光譜資料 123 4.2.1  溴化合物93的合成路徑 123 4.2.2  烯丙基醚化合物89的合成 123 4.2.3  2-烯丙基苯酚化合物90的合成 124 4.2.4  矽醚化合物91的合成 125 4.2.5  一級醇化合物92的合成 126 4.2.6  溴化合物93的合成 127 4.2.7  Morita-Baylis-Hillman 產物97的合成路徑 127 4.2.8  胺甲酸酯化合物95的合成 128 4.2.9  醛化合物96的合成 128 4.2.10 Morita-Baylis-Hillman 產物97的合成 129 4.2.11 醛化合物99的嘗試合成路徑 130 4.2.12 三級胺化合物98的合成 130 4.2.13 三級胺化合物103的合成 131 4.2.14 三級胺化合物106的合成 132 第三節 仿生中間體的路徑C之合成步驟與光譜資料 133 4.3.1  醛化合物117嘗試合成路徑 133 4.3.2  一級醇化合物115的合成 133 4.3.3  2-甲氧基苯酚化合物113的合成路徑 134 4.3.4  醛化合物124的合成 134 4.3.5  胺甲酸酯化合物126的合成 135 4.3.6  醛化合物127的合成 136 4.3.7  Morita-Baylis-Hillman 產物128的合成 137 4.3.8  2-甲氧基苯酚化合物113的合成 138 4.3.9  2-甲氧基苯酚化合物132的合成路徑 139 4.3.10 Morita-Baylis-Hillman 產物131的合成 139 4.3.11 2-甲氧基苯酚化合物132的合成 140 4.3.12 4-溴-2-甲氧基苯酚化合物144的合成路徑 141 4.3.13 烯丙基醚化合物136的合成 141 4.3.14 烯丙基苯酚化合物137的合成 142 4.3.15 矽醚化合物138的合成 143 4.3.16 一級醇化合物139的合成 144 4.3.17 醛化合物140的合成 145 4.3.18 胺甲酸酯化合物141的合成 146 4.3.19 醛化合物142的合成 147 4.3.20 Morita-Baylis-Hillman 產物143的合成 148 4.3.21 2-甲氧基苯酚化合物144的合成 149 4.3.22 六員環分子內 Diels-Alder 反應的模型研究合成路徑 150 4.3.23 矽醚化合物154的合成 151 4.3.24 苄醇化合物155的合成 151 4.3.25 反式烯烴化合物156的合成 152 4.3.26 1,2-二元醇化合物157的合成 153 4.3.27 1,3-二氧環戊烷化合物158的合成 154 4.3.28 矽醚化合物159的合成 155 4.3.29 一級醇化合物160的合成 155 4.3.30 醛化合物161的合成 156 4.3.31 烯烴化合物162的合成 157 4.3.32 2-甲氧基苯酚化合物163的合成 158 4.3.33 掩飾鄰苯醌中間體164的合成 159 4.3.34 四環化合物165的合成 160 4.3.35 2-甲氧基苯酚化合物175的合成路徑 161 4.3.36 苄醇化合物167的合成 162 4.3.37 反式烯烴化合物168的合成 163 4.3.38 矽醚化合物169的合成 163 4.3.39 1,2-二元醇化合物170的合成 164 4.3.40 1,3-二氧環戊烷化合物171的合成 165 4.3.41 一級醇化合物172的合成 166 4.3.42 醛化合物173的合成 167 4.3.43 Morita-Baylis-Hillman 產物174的合成 168 4.3.44 2-甲氧基苯酚化合物175的合成 169 第四節 仿生中間體的路徑B之合成步驟與光譜資料 170 4.4.1  醛化合物189a與192的合成路徑 170 4.4.2  烯丙基醚化合物184的合成 170 4.4.3  2-烯丙基苯酚化合物185的合成 171 4.4.4  ,-不飽和羰基化合物186的合成 172 4.4.5  矽醚化合物187的合成 173 4.4.6  一級醇化合物188的合成 174 4.4.7  醛化合物189a的合成 175 4.4.8  二矽醚化合物191的合成 176 4.4.9  醛化合物192的合成 176 4.4.10 Morita-Baylis-Hillman 產物199的合成路徑 178 4.4.11 磺酸酯化合物195的合成 178 4.4.12 一級醇化合物196的合成 179 4.4.13 矽醚化合物197的合成 180 4.4.14 醛化合物198的合成 181 4.4.15 Morita-Baylis-Hillman 產物199的合成 182 第五節 天然物 palhinine A、palhinine D 與 isopalhinine A 之全合成的實驗步驟與光譜資料 183 4.5.1  含氮九員雜環化合物203與221的合成路徑 183 4.5.2  烯丙基醚化合物206的合成 183 4.5.3  2-烯丙基苯酚化合物207的合成 184 4.5.4  腈化合物208的合成 185 4.5.5  二矽醚化合物209的合成 186 4.5.6  矽醚化合物215的合成 187 4.5.7  腈化合物210的合成 188 4.5.8  胺甲酸酯化合物214的合成 189 4.5.9  二矽醚化合物213的合成 190 4.5.10 一級醇化合物216的合成 192 4.5.11 甲磺酸酯化合物217的合成 193 4.5.12 含氮九員雜環化合物203的合成 194 4.5.13 苄醇化合物221的合成 195 4.5.14 醛化合物79與229的合成路徑 197 4.5.15 掩飾鄰苯醌中間體80的合成 198 4.5.16 掩飾鄰苯醌中間體222的合成 199 4.5.17 三環化合物220的合成 200 4.5.18 三環化合物224的合成 201 4.5.19 三環化合物227的合成 202 4.5.20 烯醇醚化合物226的合成 203 4.5.21 烯醇醚化合物228的合成 204 4.5.22 醛化合物79的合成 205 4.5.23 醛化合物229的合成 206 4.5.24 醛化合物246的合成路徑 207 4.5.25 酮化合物245的合成 207 4.5.26 醛化合物246的合成 208 4.5.27 仿生中間體252的合成路徑 209 4.5.28 酮化合物249的合成 209 4.5.29 二級醇化合物250的合成 210 4.5.30 醛化合物251的合成 212 4.5.31 仿生中間體252的合成 213 4.5.32 Palhinine 生物鹼的仿生合成路徑 214 4.5.33 二酮化合物257的合成 215 4.5.34 Palhinine D (4) 的合成 216 4.5.35 Palhinine A (1) 的合成 217 4.5.36 二元醇化合物259的合成 218 4.5.37 三酮化合物260的合成 219 4.5.38 Isopalhinine A (5) 的合成 220 第五章 參考資料 222 附 錄  231 附錄一 化合物之核磁共振光譜 232 附錄二 化合物之X光繞射分析數據 346 附錄三 論文口試投影片內容 363 附錄四 科技部「仿生全合成中草藥天然物石松鹼」研究成果記者會新聞稿與投影片內容,及清華大學化學系電子報與國家衛生研究院電子報等相關內容 404 附錄五 已發表之國際期刊及相關期刊 433

    1. (a) Ma, X.; Gang, D. R. The Lycopodium Alkaloids. Nat. Prod. Rep. 2004, 21, 752 – 772. (b) Kobayashi, J.; Morita, H. The Lycopodium Alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G. A., Ed.; Natural Products Inc.: Evanston, IL, 2005; pp 1 – 58. (c) Hirasawa, Y.; Kobayashi, J.; Morita, H. The Lycopodium Alkaloids. Heterocycles 2009, 77, 679 – 729. (d) Kitajima, M.; Takayama, H. Lycopodium Alkaloids: Isolation and Asymmetric Synthesis. Top. Curr. Chem. 2012, 309, 1 – 31.
    2. Bödeker, K. Lycopodin, das erste Alkaloïd der Gefässkryptogamen. Justus Liebigs Ann. Chem. 1881, 208, 363 – 367.
    3. Liu, J.-S.; Zhu, Y.-L.; Yu, C.-M.; Zhou, Y.-Z.; Han, Y.-Y.; Wu, F.-W.; Qi, B.-F. The Structures of Huperzine A and B, Two New Alkaloids Exhibiting Marked Anticholinesterase activity. Can. J. Chem. 1986, 64, 837 – 839.
    4. (a) Comins, D. L.; Libby, A. H.; Al-awar, R. S.; Foti, C. J. Asymmetric Synthesis of the Lycopodium Alkaloid, Na-Acetyl-Nb-methylphlegmarine. J. Org. Chem. 1999, 64, 2184 – 2185. (b) Yen, C.-F.; Liao, C.-C. Concise and Efficient Total Synthesis of Lycopodium Alkaloid Magellanine. Angew. Chem. Int. Ed. 2002, 41, 4090 – 4093. (c) Ishizaki, M.; Niimi, Y.; Hoshino, O.; Hara, H.; Takahashi T. A Formal Total Synthesis of Lycopodium Alkaloid, (±)-Magellanine, by Using the Intramolecular Pauson Khand Reaction. Tetrahedron 2005, 61, 4053 – 4065. (d) Kozaka, T.; Miyakoshi, N.; Mukai, C. Stereoselective Total Syntheses of Three Lycopodium Alkaloids, (-)-Magellanine, (+)-Magellaninone, and (+)-Paniculatine, Based on Two Pauson-Khand Reactions. J. Org. Chem. 2007, 72, 10147 – 10154. (e) Bisai V.; Sarpong R. Methoxypyridines in the Synthesis of Lycopodium Alkaloids: Total Synthesis of (±)-Lycoposerramine R. Org. Lett. 2010, 12, 2551 – 2553. (f) Pigza, J. A.; Han, J.-S.; Chandra, A.; Mutnick, D.; Pink, M.; Johnston, J. N. Total Synthesis of the Lycopodium Alkaloid Serratezomine A Using Free Radical-Mediated Vinyl Amination to Prepare a -Stannyl Enamine Linchpin. J. Org. Chem. 2013, 78, 822 – 843. (g) Wang, X.; Li, H.; Lei, X. Challenges and Strategies to the Total Syntheses of Fawcettimine-Type and Serratinine-Type Lycopodium Alkaloids. Synlett. 2013, 24, 1032 – 1043. (h) Xu, T.; Luo, X.-L.; Yang, Y.-R. Asymmetric Total Synthesis of Lycopodium Alkaloid (+)-Lycopladine A. Tetrahedron Lett. 2013, 54, 2858 – 2860. (i) Hou, S.-H.; Tu, Y.-Q.; Liu, L.; Zhang, F.-M.; Wang, S.-H.; Zhang, X.-M. Divergent and Efficient Syntheses of the Lycopodium Alkaloids (-)-Lycojaponicumin C, (-)-8-Deoxyserratinine, (+)-Fawcettimine, and (+)-Fawcettidine. Angew. Chem. Int. Ed. 2013, 52, 11373 – 11376. (j) Lee, A. S.; Liau, B. B.; Shair, M. D. A Unified Strategy for the Synthesis of 7-Membered-Ring-Containing Lycopodium Alkaloids. J. Am. Chem. Soc. 2014, 136, 13442 – 13452. (k) Zhang, J.; Wu, J.; Hong, B.; Ai, W.; Wang, X.; Li, H.; Lei X. Diversity-Oriented Synthesis of Lycopodium Alkaloids Inspired by the Hidden Functional Group Pairing Pattern. Nat. Commun. 2014, 5, 4614. (l) Murphy, R. A.; Sarpong, R. Heathcock-Inspired Strategies for the Synthesis of Fawcettimine-Type Lycopodium Alkaloids. Chem. Eur. J. 2014, 20, 42 – 56. (m) Dong, L.-B.; Wu, Y.-N.; Jiang, S.-Z.; Wu, X.-D.; He, J.; Yang, Y.-R.; Zhao, Q.-S. Isolation and Complete Structural Assignment of Lycopodium Alkaloid Cernupalhine A: Theoretical Prediction and Total Synthesis Validation. Org. Lett. 2014, 16, 2700 – 2703. (n) Jiang, S.-Z.; Lei, T.; Wei, K.; Yang, Y.-R. Collective Total Synthesis of Tetracyclic Diquinane Lycopodium Alkaloids (+)-Paniculatine, (-)-Magellanine, (+)-Magellaninone and Analogues Thereof. Org. Lett. 2014, 16, 5612 – 5615. (o) Williams, B. M.; Trauner, D. Expedient Synthesis of (+)-Lycopalhine A. Angew. Chem. Int. Ed. 2016, 55, 2191 – 2194. (p) Xiao, C.; Cao, L.; Wang, J.; Miao, Y.; Fan, H. Advances in the Collective Synthesis of Lycopodium Alkaloids. Chin. J. Org. Chem. 2017, 37, 810 – 823. (q) Li, H.; Lei, X. Fawcettimine-Type Lycopodium Alkaloids as a Driving Force for Discoveries in Organic Synthesis. Chem. Rec. 2018, 18, 543 – 554.
    5. Ayer, W. A. The Lycopodium Alkaloids. Nat. Prod. Rep. 1991, 8, 455 – 463.
    6. SN2 cyclization for nine-membered azonane ring construction in fawcettimine alkaloid synthesis: (a) Heathcock, C. H.; Smith, K. M.; Blumenkopf, T. A. Total Aynthesis of (±)-Fawcettimine (Burnell's Base A). J. Am. Chem. Soc. 1986, 108, 5022 – 5024. (b) Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. Total Synthesis of (±)-Fawcettimine. J. Org. Chem. 1989, 54, 1548 – 1562. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Total Synthesis of (+)-Fawcettimine. Angew. Chem. Int. Ed. 2007, 46, 7671 – 7673. (d) Yang, Y.-R.; Lai, Z.-W.; Shen, L.; Huang, J.-Z.; Wu, X.-D.; Yin, J.-L.; Wei, K. Total Synthesis of (-)-8-Deoxyserratinine via an Efficient Helquist Annulation and Double N-Alkylation Reaction. Org. Lett. 2010, 12, 3430 – 3433. (e) Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.; Wei, K. Application of the Helquist Annulation in Lycopodium Alkaloid Synthesis: Unified Total Syntheses of (-)-8-Deoxyserratinine, (+)-Fawcettimine, and (+)-Lycoflexine. J. Org. Chem. 2011, 76, 3684 – 3690. (f) Shimada, N.; Abe, Y.; Yokoshima, S.; Fukuyama, T. Total Synthesis of (-)-Lycoposerramine-S. Angew. Chem. Int. Ed. 2012, 51, 11824 – 11826. (g) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Total Syntheses of (±)-Fawcettimine, (±)-Fawcettidine, (±)-Lycoflexine, and (±)-Lycoposerramine-Q. Chem. Eur. J. 2013, 19, 8665 – 8672. (h) Zeng, C.; Zheng, C.; Zhao, J.; Zhao, G. Divergent Total Syntheses of (-)-Lycopladine D, (+)-Fawcettidine, and (+)-Lycoposerramine Q. Org. Lett. 2013, 15, 5846 – 5849.
    7. Mitsunobu reaction for nine-membered azonane ring construction in fawcettimine alkaloid synthesis: (a) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. First Asymmetric Total Syntheses of Fawcettimine-Type Lycopodium Alkaloids, Lycoposerramine-C and Phlegmariurine-A. Org. Lett. 2009, 11, 5554 – 5557. (b) Otsuka, Y.; Inagaki, F.; Mukai, C. Total Syntheses of (+)-Fawcettimine and (+)-Lycoposerramine-B. J. Org. Chem. 2010, 75, 3420 – 3426. (c) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Asymmetric Total Synthesis of a Pentacyclic Lycopodium Alkaloid: Huperzine-Q. Angew. Chem. Int. Ed. 2011, 50, 8025 – 8028. (d) Nakayama, A.; Kitajima, M.; Takayama, H. Syntheses of Fawcettimine-Type Lycopodium Alkaloids Utilizing the Pauson-Khand Reaction. Synlett. 2012, 23, 2014 – 2024. (e) Pan, G.; Williams, R. M. Unified Total Syntheses of Fawcettimine Class Alkaloids: Fawcettimine, Fawcettidine, Lycoflexine, and Lycoposerramine B. J. Org. Chem. 2012, 77, 4801 – 4811. (f) Zaimoku, H.; Nishide, H.; Nishibata, A.; Goto, N.; Taniguchi, T.; Ishibashi, H. Syntheses of (±)-Serratine, (±)-Lycoposerramine T, and (±)-Lycopoclavamine B. Org. Lett. 2013, 15, 2140 – 2143. (g) Zaimoku, H.; Taniguchi, T. Redox Divergent Synthesis of Fawcettimine-Type Lycopodium Alkaloids Chem. Eur. J. 2014, 20, 9613 – 9619.
    8. Other nine-membered azonane ring construction reaction in fawcettimine alkaloid synthesis: (a) Harayama, T.; Takatani, M.; Inubushi, Y. Stereoselective Syntheses of Lycopodium alkaloids, (±)-fawcettimine and (±)-8-deoxyserratinine. Tetrahedron Lett. 1979, 20, 4307 – 4310. (b) Ramharter, J.; Weinstabl, H.; Mulzer, J. Synthesis of the Lycopodium Alkaloid (+)-Lycoflexine. J. Am. Chem. Soc. 2010, 132, 14338 – 14339. (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Shao, H.; Meng, X. Total Synthesis of (±)-Alopecuridine and Its Biomimetic Transformation into (±)-Sieboldine A. Angew. Chem. Int. Ed. 2011, 50, 3916 – 3919. (d) Zhang, X.-M.; Shao, H.; Tu, Y.-Q.; Zhang, F.-M.; Wang, S.-H. Total Syntheses of (+)-Alopecuridine, (+)-Sieboldine A, and (-)-Lycojapodine A. J. Org. Chem. 2012, 77, 8174 – 8181. (e) Li, H.; Wang, X.; Lei, X. Total Syntheses of Lycopodium alkaloids (+)-fawcettimine, (+)-fawcettidine, and (-)-8-deoxyserratinine. Angew. Chem. Int. Ed. 2012, 51, 491 – 495. (f) Li, H.; Wang, X.; Hong, B.; Lei, X. Collective Synthesis of Lycopodium Alkaloids and Tautomer Locking Strategy for the Total Synthesis of (-)-Lycojapodine A. J. Org. Chem. 2013, 78, 800 – 821. (g) Hong, B.; Li, H.; Wu, J.; Zhang, J.; Lei, X. Total Syntheses of (-)-Huperzine Q and (+)-Lycopladines B and C. Angew. Chem. Int. Ed. 2015, 54, 1011 – 1015.
    9. Zhao, F.-W.; Sun, Q.-Y.; Yang, F.-M.; Hu, G.-W.; Luo, J.-F.; Tang, G.-H.; Wang, Y.-H.; Long, C.-L. Palhinine A, a Novel Alkaloid from Palhinhaea cernua. Org. Lett. 2010, 12, 3922 – 3925.
    10. 臺灣中藥典第三版;衛生福利部編印,2018年,145 – 146頁。
    11. Dong, L.-B.; Gao, X.; Liu, F.; He, J.; Wu, X.-D.; Li, Y.; Zhao, Q.-S. Isopalhinine A, a Unique Pentacyclic Lycopodium Alkaloid from Palhinhaea cernua. Org. Lett. 2013, 15, 3570 – 3573.
    12. (a) Wang, X.-J.; Li, L.; Yu, S.-S.; Ma. S.-G.; Qu, J.; Liu, Y.-B.; Li, Y.; Wang, Y.; Tang, W. Five New Fawcettimine-Related Alkaloids from Lycopodium japonicum Thunb. Fitoterapia 2013, 91, 74 – 81. (b) Wang, X.-J.; Li, L.; Yu, S.-S.; Ma, S.-G.; Qu, J.; Liu, Y.-B.; Li, Y.; Wang, Y.; Tang, W. Corrigendum to “Five New Fawcettimine-Related Alkaloids from Lycopodium japoniucm Thunb.” [Fitoterapia (2013) 74 – 81]. Fitoterapia 2016, 114, 194.
    13. Zhao, C.; Zheng, H.; Jing, P.; Fang, B.; Xie, X.; She, X. Tandem Oxidative Dearomatization/Intramolecular Diels-Alder Reaction for Construction of the Tricyclic Core of Palhinine A. Org. Lett. 2012, 14, 2293 – 2295.
    14. Zhang, G.-B.; Wang, F.-X.; Du, J.-Y.; Qu, H.; Ma, X.-Y.; Wei, M.-X.; Wang, C.-T. ; Li, Q.; Fan, C.-A. Toward the Total Synthesis of Palhinine A: Expedient Assembly of Multifunctionalized Isotwistane Ring System with Contiguous Quaternary Stereocenters. Org. Lett. 2012, 14, 3696 – 3699.
    15. Sizemore, N.; Rychnovsky, S. D. Studies toward the Synthesis of Palhinine Lycopodium Alkaloids: A Morita-Baylis-Hillman/Intramolecular Diels-Alder Approach. Org. Lett. 2014, 16, 688 – 691.
    16. Gaugele, D.; Maier, M. E. Approach to the Core Structure of the Polycyclic Alkaloid Palhinine A. Synlett. 2013, 24, 955 – 958.
    17. (a) Duan, S.; Long, D.; Zhao, C.; Zhao, G.; Yuan, Z.; Xie, X.; Fang, J.; She, X. Efficient Construction of the A/C/D Tricyclic Skeleton of Palhinine A. Org. Chem. Front. 2016, 3, 1137 – 1143. (b) Wang, F.-X.; Zhang, P.-L.; Wang, H.-B.; Zhang, G.-B.; Fan, C.-A. A Strategic Study towards Constructing the Nine-Membered Azonane Ring System of Palhinine A via an Azidoketol Fragmentation Reaction. Sci. China: Chem. 2016, 59, 1188 – 1196.
    18. Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A. Total Synthesis of Lycopodium Alkaloids Palhinine A and Palhinine D. J. Am. Chem. Soc. 2017, 139, 4282 – 4285.
    19. Curran, D. P.; Chang, C.-T. Atom Transfer Cyclization Reactions of -Iodo Esters, Ketones, and Malonates: Examples of Selective 5-Exo, 6-Endo, 6-Exo, and 7-Endo Ring Closures. J. Org. Chem. 1989, 54, 3140 – 3157.
    20. Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley: New York, 1989; Chapter 5, pp 71 – 75.
    21. Robinson, R. A Synthesis of Tropinone. J. Chem. Soc., Trans. 1917, 111, 762 – 768.
    22. Medley, J. W.; Movassaghi, M. Robinson's Landmark Synthesis of Tropinone. Chem.Commun. 2013, 49, 10775 – 10777.
    23. Willstätter, R. Synthesen in der Tropingruppe. I. Synthese des Tropilidens. Justus Liebigs Ann. Chem. 1901, 317, 204 – 265.
    24. Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Collective Synthesis of Natural Products by Means of Organocascade Catalysis. Nature 2011, 475, 183 – 188.
    25. (a) Liao, C.-C.; Peddinti, R. K. Masked o-Benzoquinones in Organic Synthesis. Acc. Chem. Res. 2002, 35, 856 – 866. (b) Harry, N. A.; Saranya, S.; Krishnan, K. K.; Anilkumar, G. Recent Advances in the Chemistry of Masked Ortho‐Benzoquinones and Their Applications in Organic Synthesis. Asian J. Org. Chem. 2017, 6, 945 – 966.
    26. Gao, S.-Y.; Lin, Y.-L.; Rao, P. D.; Liao, C.-C. Diels-Alder Reactions of Masked o-Benzoquinones with Electron-rich Dienophiles. Highly Regio- and Stereoselective Synthesis of Bicyclo[2.2.2]octenone Derivatives. Synlett. 2000, 421 – 423.
    27. Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, S.; Song, L.-D.; Shiao, H.-C. Generation, Stability, Dimerization, and Diels-Alder Reactions of Masked o-Benzoquinones. Synthesis of Substituted Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J. Org. Chem. 1999, 64, 4102 – 4110.
    28. Chen, Y.-K.; Peddinti, R. K.; Liao, C.-C. Diastereoselective Intramolecular Diels-Alder Reactions of Masked o-Benzoquinones: A Short Entry to Highly Functionalized Tricyclic [m.2.2.0] Ring Systems. Chem. Commun. 2001, 1340 – 1341.
    29. Lee, T.-H.; Rao, P. D.; Liao, C.-C. Photochemistry of Bicyclo[2.2.2]octenones: An Uncommon Oxidative Decarbonylation. Chem. Commun. 1999, 801 – 802.
    30. (a) Liao, C.-C.; Wei, C.-P. Synthetic Applications of Masked o-Benzoquinones. A Novel Total Synthesis of (±)Forsythide Aglucone Dimethyl Ester. Tetrahedron Lett. 1989, 30, 2255 – 2256. (b) Chu, C.-S.; Liao, C.-C.; Rao, P. D. A Formal Synthesis of (±)-Reserpine from Methyl Vanillate. Chem. Commun. 1996, 1537 – 1538. (c) Lee, T.-H.; Liao, C.-C. Stereoselective Synthesis of (±)-(13E)-2- Oxo-5-cis-17,20-cleroda-3,13-dien-15-oic Acid, and Alleged cis-Clerodane Diterpenic Acid. Tetrahedron Lett. 1996, 37, 6869 – 6872. (d) Liu, W.-C.; Liao, C.-C. A New and Highly Stereoselective Approach to cis-Clerodanes. Synlett. 1998, 912 – 914. (e) Liu, W.-C.; Liao, C.-C. The First Total Synthesis of (±)-Pallescensin B. Chem. Commun. 1999, 117 – 118. (f) Hsu, D.-S.; Hsu, P.-Y.; Liao, C.-C. The First Total Synthesis of (±)-Eremopetasidione. Org. Lett. 2001, 3, 263 – 265. (g) Yen, C.-F.; Liao, C.-C. Concise and Efficient Total Synthesis of Lycopodium Alkaloid Magellanine. Angew. Chem. Int. Ed. 2002, 41, 4090 – 4093. (h) Hsu, D.-S.; Liao, C.-C. Total Syntheses of Sesterpenic Acids:  Refuted (±)-Bilosespenes A and B. Org. Lett. 2003, 5, 4741 – 4743. (i) Liao, C.-C. Masked o-Benzoquinone Strategy in Organic Synthesis: Short and Efficient Construction of cis-Decalins and Linear Triquinanes from 2-Methoxyphenols. Pure Appl. Chem. 2005, 77, 1221 – 1234.
    31. (a) 蕭暉議,壹:天然物(±)-Annuionone B與 (±)-Tanarifuranonol之全合成; 貳:新穎抗流行性感冒病毒藥物之發展研究,博士論文,國立清華大學,2009年。 (b) Shiao, H.-Y.; Hsieh, H.-P.; Liao, C.-C. First Total Syntheses of (±)-Annuionone B and (±)-Tanarifuranonol. Org. Lett. 2008, 10, 449 – 452.
    32. Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Recent Contributions from the Baylis-Hillman Reaction to Organic Chemistry. Chem. Rev. 2010, 110, 5447 – 5674.
    33. (a) Yoshida, M.; Higuchi, M.; Shishido, K. Stereoselective Construction of Substituted Chromans by Palladium-Catalyzed Cyclization of Propargylic Carbonates with 2-(2-Hydroxyphenyl)acetates. Org. Lett. 2009, 11, 4752 – 4755. (b) Devi, R.; Das, J.; Sarma, B.; Das, S. K. Phenolate-Induced Intramolecular Ring-Opening Cyclization of N-Tosylaziridines: Access to Functionalized Benzoxacycles. Org. Biomol. Chem. 2018, 16, 5846 – 5858.
    34. (a) Vedejs, E.; Stults, J. S. Synthesis of Azocine Derivatives from Thio Aldehyde Diels-Alder Adducts. J. Org. Chem. 1988, 53, 2226 – 2232. (b) Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman M. Design, Synthesis, and Biological Evaluation of Cytotoxic 11-Aminoalkenylindeno- isoquinoline and 11-Diamino- alkenylindenoisoquinoline Topoisomerase I Inhibitors. Bioorg. Med. Chem. 2004, 12, 5147 – 5160.
    35. (a) Narender, P.; Ravikumar, K.; Rao, V. J. Baylis-Hillman Adducts between Pyridine Carboxaldehyde Derivatives and Cyclic Enones. Tetrahedron 2006, 62, 954 – 959. (b) Shi, M.; Jiand, J.-K.; Li, C.-Q. Lewis Base and L-Proline co-Catalyzed Baylis-Hillman Reaction of Arylaldehydes with Methyl Vinyl Ketone. Tetrahedron Lett. 2002, 43, 127 – 130.
    36. Shi, M.; Liu, Y.-H. Traditional Morita-Baylis-Hillman Reaction of Aldehydes with Methyl Vinyl Ketone co-Catalyzed by Triphenylphosphine and Nitrophenol. Org. Biomol. Chem. 2006, 4, 1468 – 1470.
    37. Lin, H.-Y.; Causey, R.; Garcia, G. E.; Snider, B. B. Synthesis of (±)-7-Hydroxy- lycopodine. J. Org. Chem. 2012, 77, 7143 – 7156.
    38. Yamamoto, T.; Harigaya, Y.; Okawara, M. Preparation and Reactions of S,S-Dimethyl-N-(2,4-Dinitrophenyl)Sulfilimine. Tetrahedron 1978, 34, 3097 – 3103.
    39. (a) Hiraki, Y.; Kamiya, M.; Tanikaga, R.; Ono, N.; Kaji, A. Reaction of Dimethyl Sulfoxide-Trifluoroacetic Anhydride with Anilines, Phenols, and Thiophenols. Bull. Chem. Soc. Jpn. 1977, 50, 447 – 452. (b) Yamamoto, T.; Okawara, M. A New Route to o-Methylthiomethylated Phenols by Use of S,S-Dimethyl- sulfilimines. Bull. Chem. Soc. Jpn. 1978, 51, 2443 – 2444.
    40. Wells, G.; Lowe, P. R.; Stevens, M. F. G. Antitumor Benzothiazoles. 13. (Diacetoxy)iodobenzene (DAIB) oxidation of 2-(4-Hydroxy-3-methoxyphenyl)- benzothiazole and Related Compounds in the Presence of Dienophiles. ARKIVOC 2000, 779 – 797.
    41. Chittimalla, S. K.; Shiao, H.-Y.; Liao, C.-C. Domino Retro Diels-Alder/Diels- Alder Reaction: An Efficient Protocol for the Synthesis of Highly Functionalized Bicyclo[2.2.2]octenones and Bicyclo[2.2.2]octadienones. Org. Biomol. Chem. 2006, 4, 2267 – 2277.
    42. (a) Lai, C.-H.; Shen, Y.-L.; Liao, C.-C. Synthesis of Stable Bromo-substituted Masked o-Benzoquinones and their Application to the Synthesis of Bicyclo[2.2.2]octenones. Synlett. 1997, 1351 – 1352.; (b) Lai, C.-H.; Shen, Y.-L.; Wang, M.-N.; Rao, N. S. K.; Liao, C.-C. Intermolecular Diels-Alder Reactions of Brominated Masked o-Benzoquinones with Electron-Deficient Dienophiles. A Detour Method to Synthesize Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J. Org. Chem. 2002, 67, 6493 – 6502.
    43. (a) Nicolaou, K. C.; Toh, Q.-Y.; Chen, D. Y.-K. An Expedient Asymmetric Synthesis of Platencin. J. Am. Chem. Soc. 2008, 130, 11292 – 11293. (b) Leung, G. Y. C.; Li, H.; Toh, Q.-Y.; Ng, A. M.-Y.; Sum, R. J.; Bandow, J. E.; Chen, D. Y.-K. Total Synthesis and Biological Evaluation of the Fab-Inhibitory Antibiotic Platencin and Analogues Thereof. Eur. J. Org. Chem. 2011, 183 – 196. (c) Cheng, H.; Xu, L.; Chen, D.-L.; Chen, Q.-H.; Wang, F.-P. Construction of Functionalized B/C/D Ring System of C19-Diterpenoid Alkaloids via Intramolecular Diels-Alder Reaction Followed by Wagner-Meerwein Rearrangement. Tetrahedron 2012, 68, 1171 – 1176. (d) Cheng, H.; Zeng, F.-H.; Yang, X.; Meng, Y.-J.; Xu, L.; Wang, F.-P. Collective Total Syntheses of Atisane-Type Diterpenes and Atisine-Type Diterpenoid Alkaloids: (±)-Spiramilactone B, (±)-Spiraminol, (±)-Dihydroajaconine, and (±)-Spiramines C and D. Angew. Chem. Int. Ed. 2016, 55, 392 – 396.
    44. Zhao, S.; Wu, Y.; Sun, Q.; Cheng, T.-M.; Li, R.-T. Triphenylphosphine-N- Bromosuccinimide Mediated Chemoselective Cyclodehydration of Diols. Synthesis 2015, 47, 1154 – 1162.
    45. 賴建勳,掩飾鄰苯醌與相關2,4-環己二烯酮的 Diels-Alder 反應之研究,博士論文,國立清華大學,2001年。
    46. (a) Fox, M. E.; Lennon, I. C.; Meek, G. A Novel Synthesis of 5-Hydroxy- 2,2-dimethyl-10-propyl-2H-pyrano[2,3-f]chromen-8-one. Tetrahedron Lett. 2002, 43, 2899 – 2902. (b) Keck, G. E.; Wager, T. T.; Rodriquez, J. F. D. Total Syntheses of (-)-Lycoricidine, (+)-Lycoricidine, and (+)-Narciclasine via 6-exo Cyclizations of Substituted Vinyl Radicals with Oxime Ethers. J. Am. Chem. Soc. 1999, 121, 5176 – 5190.
    47. (a) Chandrasekhar, S.; Basu, D.; Sailu, M.; Kotamraju, S. Novel Synthetic Route to the Tricyclic Core of (±)-Galanthamine. Tetrahedron Lett. 2009, 50, 4882 – 4884. (b) Dulla, B.; Tangellamudi, N. D.; Balasubramanian, S.; Yellanki, S.; Medishetti, R.; Banote, R. K.; Chaudhari, G. H.; Kulkarni, P.; Iqbal, J.; Reiser, O.; Pal, M. Isovanillin Derived N-(Un)Substituted Hydroxylamines Possessing an Ortho-Allylic Group: Valuable Precursors to Bioactive N-Heterocycles. Org. Biomol. Chem. 2014, 12, 2552 – 2558.
    48. Leger, P. R.; Murphy, R. A.; Pushkarskaya, E.; Sarpong, R. Synthetic Efforts toward the Lycopodium Alkaloids Inspires a Hydrogen Iodide Mediated Method for the Hydroamination and Hydroetherification of Olefins. Chem. Eur. J. 2015, 21, 4377 – 4383.
    49. Feng, Y.; Luo, Z.; Sun, G.; Chen, M.; Lai, J.; Lin, W.; Goldmann, S.; Zhang, L.; Wang, Z. Development of an Efficient and Scalable Biocatalytic Route to (3R)-3-Aminoazepane: A Pharmaceutically Important Intermediate. Org. Process Res. Dev. 2017, 21, 648 – 654.
    50. Hsu, D.-S.; Chou, Y.-Y.; Tung, Y.-S.; Liao, C.-C. Photochemistry of Tricyclo[5.2.2.02,6]undeca-4,10-dien-8-ones: An Efficient General Route to Substituted Linear Triquinanes from 2-Methoxyphenols. Total Synthesis of (±)-Δ9(12)-Capnellene. Chem. Eur. J. 2010, 16, 3121 – 3131.
    51. (a) Gong, J.; Chen, H.; Liu, X.-Y.; Wang, Z.-X.; Nie, W.; Qin, Y. Total Synthesis of Atropurpuran. Nat. Commun. 2017, 7, 12183. (b) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Cross-Coupling Reactions Using Samarium(II) Iodide. Chem. Rev. 2014, 114, 5959 – 6039.
    52. (a) Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. Thiol-Catalyzed Acyl Radical Cyclization of Alkenals. J. Org. Chem. 2005, 70, 681 – 683. (b) Hsu, D.-S.; Chen, C.-H.; Hsu, C.-W. Synthesis of Spiranes by Thiol-Mediated Acyl Radical Cyclization. Eur. J. Org. Chem. 2016, 2016, 589 – 598.
    53. Davis, F. A.; Vishwakarma, L. C.; Billmers, J. G.; Finn, J. Synthesis of -Hydroxycarbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfonyloxaziridines. J. Org. Chem. 1984, 49, 3241 – 3243.
    54. Chen, C.-M.; Shiao, H.-Y.; Uang, B.-J.; Hsieh, H.-P. Biomimetic Syntheses of (±)-Isopalhinine A, (±)-Palhinine A, and (±)-Palhinine D. Angew. Chem. Int. Ed. 2018, 57, 15572 – 15576.
    55. Carreira, E. M.; Richter M. J. R. Synthesis of Isopalhinine A and Palhinine D. Synfacts 2019, 15, 1.
    56. Lal, K.; Ghosh, S.; Salomon, R. G. Hydroxyl-Directed Regioselective Mono- demethylation of Polymethoxyarenes. J. Org. Chem. 1987, 52, 1072 – 1078.
    57. Okazaki, M.; Shuto, Y. Stereoselective Synthesis of the Neolignan, (+)-Dehydro- diconiferyl Alcohol. Biosci. Biotechnol. Biochem. 2001, 65, 1134 – 1140.
    58. Seidel, J. L.; Epstein, W. W.; Davidson, D. W. Neotropical Ant Gardens: I. Chemical Constituents. J. Chem. Ecol. 1990, 16, 1791 – 1816.
    59. Danishefsky, S. J.; Harrison, P. J.; Webb II, R. R.; O'Neil, B. T. The Total Synthesis of Quinocarcinol Methyl Ester. J. Am. Chem. Soc. 1985, 107, 1421 – 1423.

    QR CODE