研究生: |
陳致銘 Chen, Chih-Ming |
---|---|
論文名稱: |
天然物 (±)-Isopalhinine A、(±)-Palhinine A 與 (±)-Palhinine D 的仿生合成 Biomimetic Syntheses of (±)-Isopalhinine A, (±)-Palhinine A and (±)-Palhinine D |
指導教授: |
謝興邦
Hsieh, Hsing-Pang |
口試委員: |
汪炳鈞
Uang, Biing-Jiun 林俊成 Lin, Chun-Cheng 陳建添 Chen, Chien-Tien 王志偉 Ong, Chi-Wi 朱延和 Chu, Yen-Ho 吳學亮 Wu, Hsyueh-Liang |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 439 |
中文關鍵詞: | 石松生物鹼 、天然物全合成 、仿生合成 、掩飾鄰苯醌 、醯基自由基環化反應 、異扭曲烷 、仿生中間體 |
外文關鍵詞: | palhinine, biomimetic synthesis, isotwistane, 9-membered azonane ring, Diels-Alder reaction, acyl radical cyclization |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Palhinine 生物鹼是一類由異扭曲烷與含氮九員雜環構成核心結構的獨特石松生物鹼,它複雜的5/6/6/9 四環結構與5/6/6/6/7 五環結構,以及異扭曲烷上C4與C12 的兩個相鄰四級碳,對於化學合成來說是一大挑戰。我們經由與其他研究團隊不同的合成策略,在合成初期既利用簡單的SN2 環化反應建立含氮九員雜環,避免跨環張力造成的合環問題;接著,利用掩飾鄰苯醌進行具有位置及立體選擇性的 Diels-Alder 反應得到雙環[2.2.2]辛烯酮骨架,不僅建立了6/6/9 三環結構,更引入了天然物所需的相對立體化學;然後,經由硫醇輔助自由基環化反應建立最後一個五員環,得到5/6/6/9 四環仿生中間體;最後,經由仿生合成途徑,快速地由仿生中間體合成出天然物 isopalhinine A、palhinine A 及 palhinine D。
Palhinine alkaloids, a novel Lycopodium alkaloid family, are structurally featured by the unique isotwistane framework with 9-membered azonane ring. The distinctive 5/6/6/9 or 5/6/6/6/7 skeleton with two vicinal quaternary centers of C4 and C12 of isotwistane skeleton has attracted much interest in the synthetic community. Herein, we described a biomimetic synthetic strategy for the total synthesis of isopalhinine A, palhinine A, and palhinine D from a 5/6/6/9 tetracyclic common intermediate. Key steps for the synthesis of the core 5/6/6/9 tetracyclic skeleton for palhinine alkaloids include (a) an early-stage direct SN2 cyclization to form 9-membered azonane ring to minimize the transannular strain, (b) a regio- and stereo-selective Diels-Alder reaction to furnish 6/6/9 tricyclic structure and established desired stereochemistry, and (c) a thio-mediated acyl radical cyclization to complete 5/6/6/9 tetracyclic core architecture.
1. (a) Ma, X.; Gang, D. R. The Lycopodium Alkaloids. Nat. Prod. Rep. 2004, 21, 752 – 772. (b) Kobayashi, J.; Morita, H. The Lycopodium Alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G. A., Ed.; Natural Products Inc.: Evanston, IL, 2005; pp 1 – 58. (c) Hirasawa, Y.; Kobayashi, J.; Morita, H. The Lycopodium Alkaloids. Heterocycles 2009, 77, 679 – 729. (d) Kitajima, M.; Takayama, H. Lycopodium Alkaloids: Isolation and Asymmetric Synthesis. Top. Curr. Chem. 2012, 309, 1 – 31.
2. Bödeker, K. Lycopodin, das erste Alkaloïd der Gefässkryptogamen. Justus Liebigs Ann. Chem. 1881, 208, 363 – 367.
3. Liu, J.-S.; Zhu, Y.-L.; Yu, C.-M.; Zhou, Y.-Z.; Han, Y.-Y.; Wu, F.-W.; Qi, B.-F. The Structures of Huperzine A and B, Two New Alkaloids Exhibiting Marked Anticholinesterase activity. Can. J. Chem. 1986, 64, 837 – 839.
4. (a) Comins, D. L.; Libby, A. H.; Al-awar, R. S.; Foti, C. J. Asymmetric Synthesis of the Lycopodium Alkaloid, Na-Acetyl-Nb-methylphlegmarine. J. Org. Chem. 1999, 64, 2184 – 2185. (b) Yen, C.-F.; Liao, C.-C. Concise and Efficient Total Synthesis of Lycopodium Alkaloid Magellanine. Angew. Chem. Int. Ed. 2002, 41, 4090 – 4093. (c) Ishizaki, M.; Niimi, Y.; Hoshino, O.; Hara, H.; Takahashi T. A Formal Total Synthesis of Lycopodium Alkaloid, (±)-Magellanine, by Using the Intramolecular Pauson Khand Reaction. Tetrahedron 2005, 61, 4053 – 4065. (d) Kozaka, T.; Miyakoshi, N.; Mukai, C. Stereoselective Total Syntheses of Three Lycopodium Alkaloids, (-)-Magellanine, (+)-Magellaninone, and (+)-Paniculatine, Based on Two Pauson-Khand Reactions. J. Org. Chem. 2007, 72, 10147 – 10154. (e) Bisai V.; Sarpong R. Methoxypyridines in the Synthesis of Lycopodium Alkaloids: Total Synthesis of (±)-Lycoposerramine R. Org. Lett. 2010, 12, 2551 – 2553. (f) Pigza, J. A.; Han, J.-S.; Chandra, A.; Mutnick, D.; Pink, M.; Johnston, J. N. Total Synthesis of the Lycopodium Alkaloid Serratezomine A Using Free Radical-Mediated Vinyl Amination to Prepare a -Stannyl Enamine Linchpin. J. Org. Chem. 2013, 78, 822 – 843. (g) Wang, X.; Li, H.; Lei, X. Challenges and Strategies to the Total Syntheses of Fawcettimine-Type and Serratinine-Type Lycopodium Alkaloids. Synlett. 2013, 24, 1032 – 1043. (h) Xu, T.; Luo, X.-L.; Yang, Y.-R. Asymmetric Total Synthesis of Lycopodium Alkaloid (+)-Lycopladine A. Tetrahedron Lett. 2013, 54, 2858 – 2860. (i) Hou, S.-H.; Tu, Y.-Q.; Liu, L.; Zhang, F.-M.; Wang, S.-H.; Zhang, X.-M. Divergent and Efficient Syntheses of the Lycopodium Alkaloids (-)-Lycojaponicumin C, (-)-8-Deoxyserratinine, (+)-Fawcettimine, and (+)-Fawcettidine. Angew. Chem. Int. Ed. 2013, 52, 11373 – 11376. (j) Lee, A. S.; Liau, B. B.; Shair, M. D. A Unified Strategy for the Synthesis of 7-Membered-Ring-Containing Lycopodium Alkaloids. J. Am. Chem. Soc. 2014, 136, 13442 – 13452. (k) Zhang, J.; Wu, J.; Hong, B.; Ai, W.; Wang, X.; Li, H.; Lei X. Diversity-Oriented Synthesis of Lycopodium Alkaloids Inspired by the Hidden Functional Group Pairing Pattern. Nat. Commun. 2014, 5, 4614. (l) Murphy, R. A.; Sarpong, R. Heathcock-Inspired Strategies for the Synthesis of Fawcettimine-Type Lycopodium Alkaloids. Chem. Eur. J. 2014, 20, 42 – 56. (m) Dong, L.-B.; Wu, Y.-N.; Jiang, S.-Z.; Wu, X.-D.; He, J.; Yang, Y.-R.; Zhao, Q.-S. Isolation and Complete Structural Assignment of Lycopodium Alkaloid Cernupalhine A: Theoretical Prediction and Total Synthesis Validation. Org. Lett. 2014, 16, 2700 – 2703. (n) Jiang, S.-Z.; Lei, T.; Wei, K.; Yang, Y.-R. Collective Total Synthesis of Tetracyclic Diquinane Lycopodium Alkaloids (+)-Paniculatine, (-)-Magellanine, (+)-Magellaninone and Analogues Thereof. Org. Lett. 2014, 16, 5612 – 5615. (o) Williams, B. M.; Trauner, D. Expedient Synthesis of (+)-Lycopalhine A. Angew. Chem. Int. Ed. 2016, 55, 2191 – 2194. (p) Xiao, C.; Cao, L.; Wang, J.; Miao, Y.; Fan, H. Advances in the Collective Synthesis of Lycopodium Alkaloids. Chin. J. Org. Chem. 2017, 37, 810 – 823. (q) Li, H.; Lei, X. Fawcettimine-Type Lycopodium Alkaloids as a Driving Force for Discoveries in Organic Synthesis. Chem. Rec. 2018, 18, 543 – 554.
5. Ayer, W. A. The Lycopodium Alkaloids. Nat. Prod. Rep. 1991, 8, 455 – 463.
6. SN2 cyclization for nine-membered azonane ring construction in fawcettimine alkaloid synthesis: (a) Heathcock, C. H.; Smith, K. M.; Blumenkopf, T. A. Total Aynthesis of (±)-Fawcettimine (Burnell's Base A). J. Am. Chem. Soc. 1986, 108, 5022 – 5024. (b) Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. Total Synthesis of (±)-Fawcettimine. J. Org. Chem. 1989, 54, 1548 – 1562. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Total Synthesis of (+)-Fawcettimine. Angew. Chem. Int. Ed. 2007, 46, 7671 – 7673. (d) Yang, Y.-R.; Lai, Z.-W.; Shen, L.; Huang, J.-Z.; Wu, X.-D.; Yin, J.-L.; Wei, K. Total Synthesis of (-)-8-Deoxyserratinine via an Efficient Helquist Annulation and Double N-Alkylation Reaction. Org. Lett. 2010, 12, 3430 – 3433. (e) Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.; Wei, K. Application of the Helquist Annulation in Lycopodium Alkaloid Synthesis: Unified Total Syntheses of (-)-8-Deoxyserratinine, (+)-Fawcettimine, and (+)-Lycoflexine. J. Org. Chem. 2011, 76, 3684 – 3690. (f) Shimada, N.; Abe, Y.; Yokoshima, S.; Fukuyama, T. Total Synthesis of (-)-Lycoposerramine-S. Angew. Chem. Int. Ed. 2012, 51, 11824 – 11826. (g) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Total Syntheses of (±)-Fawcettimine, (±)-Fawcettidine, (±)-Lycoflexine, and (±)-Lycoposerramine-Q. Chem. Eur. J. 2013, 19, 8665 – 8672. (h) Zeng, C.; Zheng, C.; Zhao, J.; Zhao, G. Divergent Total Syntheses of (-)-Lycopladine D, (+)-Fawcettidine, and (+)-Lycoposerramine Q. Org. Lett. 2013, 15, 5846 – 5849.
7. Mitsunobu reaction for nine-membered azonane ring construction in fawcettimine alkaloid synthesis: (a) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. First Asymmetric Total Syntheses of Fawcettimine-Type Lycopodium Alkaloids, Lycoposerramine-C and Phlegmariurine-A. Org. Lett. 2009, 11, 5554 – 5557. (b) Otsuka, Y.; Inagaki, F.; Mukai, C. Total Syntheses of (+)-Fawcettimine and (+)-Lycoposerramine-B. J. Org. Chem. 2010, 75, 3420 – 3426. (c) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Asymmetric Total Synthesis of a Pentacyclic Lycopodium Alkaloid: Huperzine-Q. Angew. Chem. Int. Ed. 2011, 50, 8025 – 8028. (d) Nakayama, A.; Kitajima, M.; Takayama, H. Syntheses of Fawcettimine-Type Lycopodium Alkaloids Utilizing the Pauson-Khand Reaction. Synlett. 2012, 23, 2014 – 2024. (e) Pan, G.; Williams, R. M. Unified Total Syntheses of Fawcettimine Class Alkaloids: Fawcettimine, Fawcettidine, Lycoflexine, and Lycoposerramine B. J. Org. Chem. 2012, 77, 4801 – 4811. (f) Zaimoku, H.; Nishide, H.; Nishibata, A.; Goto, N.; Taniguchi, T.; Ishibashi, H. Syntheses of (±)-Serratine, (±)-Lycoposerramine T, and (±)-Lycopoclavamine B. Org. Lett. 2013, 15, 2140 – 2143. (g) Zaimoku, H.; Taniguchi, T. Redox Divergent Synthesis of Fawcettimine-Type Lycopodium Alkaloids Chem. Eur. J. 2014, 20, 9613 – 9619.
8. Other nine-membered azonane ring construction reaction in fawcettimine alkaloid synthesis: (a) Harayama, T.; Takatani, M.; Inubushi, Y. Stereoselective Syntheses of Lycopodium alkaloids, (±)-fawcettimine and (±)-8-deoxyserratinine. Tetrahedron Lett. 1979, 20, 4307 – 4310. (b) Ramharter, J.; Weinstabl, H.; Mulzer, J. Synthesis of the Lycopodium Alkaloid (+)-Lycoflexine. J. Am. Chem. Soc. 2010, 132, 14338 – 14339. (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Shao, H.; Meng, X. Total Synthesis of (±)-Alopecuridine and Its Biomimetic Transformation into (±)-Sieboldine A. Angew. Chem. Int. Ed. 2011, 50, 3916 – 3919. (d) Zhang, X.-M.; Shao, H.; Tu, Y.-Q.; Zhang, F.-M.; Wang, S.-H. Total Syntheses of (+)-Alopecuridine, (+)-Sieboldine A, and (-)-Lycojapodine A. J. Org. Chem. 2012, 77, 8174 – 8181. (e) Li, H.; Wang, X.; Lei, X. Total Syntheses of Lycopodium alkaloids (+)-fawcettimine, (+)-fawcettidine, and (-)-8-deoxyserratinine. Angew. Chem. Int. Ed. 2012, 51, 491 – 495. (f) Li, H.; Wang, X.; Hong, B.; Lei, X. Collective Synthesis of Lycopodium Alkaloids and Tautomer Locking Strategy for the Total Synthesis of (-)-Lycojapodine A. J. Org. Chem. 2013, 78, 800 – 821. (g) Hong, B.; Li, H.; Wu, J.; Zhang, J.; Lei, X. Total Syntheses of (-)-Huperzine Q and (+)-Lycopladines B and C. Angew. Chem. Int. Ed. 2015, 54, 1011 – 1015.
9. Zhao, F.-W.; Sun, Q.-Y.; Yang, F.-M.; Hu, G.-W.; Luo, J.-F.; Tang, G.-H.; Wang, Y.-H.; Long, C.-L. Palhinine A, a Novel Alkaloid from Palhinhaea cernua. Org. Lett. 2010, 12, 3922 – 3925.
10. 臺灣中藥典第三版;衛生福利部編印,2018年,145 – 146頁。
11. Dong, L.-B.; Gao, X.; Liu, F.; He, J.; Wu, X.-D.; Li, Y.; Zhao, Q.-S. Isopalhinine A, a Unique Pentacyclic Lycopodium Alkaloid from Palhinhaea cernua. Org. Lett. 2013, 15, 3570 – 3573.
12. (a) Wang, X.-J.; Li, L.; Yu, S.-S.; Ma. S.-G.; Qu, J.; Liu, Y.-B.; Li, Y.; Wang, Y.; Tang, W. Five New Fawcettimine-Related Alkaloids from Lycopodium japonicum Thunb. Fitoterapia 2013, 91, 74 – 81. (b) Wang, X.-J.; Li, L.; Yu, S.-S.; Ma, S.-G.; Qu, J.; Liu, Y.-B.; Li, Y.; Wang, Y.; Tang, W. Corrigendum to “Five New Fawcettimine-Related Alkaloids from Lycopodium japoniucm Thunb.” [Fitoterapia (2013) 74 – 81]. Fitoterapia 2016, 114, 194.
13. Zhao, C.; Zheng, H.; Jing, P.; Fang, B.; Xie, X.; She, X. Tandem Oxidative Dearomatization/Intramolecular Diels-Alder Reaction for Construction of the Tricyclic Core of Palhinine A. Org. Lett. 2012, 14, 2293 – 2295.
14. Zhang, G.-B.; Wang, F.-X.; Du, J.-Y.; Qu, H.; Ma, X.-Y.; Wei, M.-X.; Wang, C.-T. ; Li, Q.; Fan, C.-A. Toward the Total Synthesis of Palhinine A: Expedient Assembly of Multifunctionalized Isotwistane Ring System with Contiguous Quaternary Stereocenters. Org. Lett. 2012, 14, 3696 – 3699.
15. Sizemore, N.; Rychnovsky, S. D. Studies toward the Synthesis of Palhinine Lycopodium Alkaloids: A Morita-Baylis-Hillman/Intramolecular Diels-Alder Approach. Org. Lett. 2014, 16, 688 – 691.
16. Gaugele, D.; Maier, M. E. Approach to the Core Structure of the Polycyclic Alkaloid Palhinine A. Synlett. 2013, 24, 955 – 958.
17. (a) Duan, S.; Long, D.; Zhao, C.; Zhao, G.; Yuan, Z.; Xie, X.; Fang, J.; She, X. Efficient Construction of the A/C/D Tricyclic Skeleton of Palhinine A. Org. Chem. Front. 2016, 3, 1137 – 1143. (b) Wang, F.-X.; Zhang, P.-L.; Wang, H.-B.; Zhang, G.-B.; Fan, C.-A. A Strategic Study towards Constructing the Nine-Membered Azonane Ring System of Palhinine A via an Azidoketol Fragmentation Reaction. Sci. China: Chem. 2016, 59, 1188 – 1196.
18. Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A. Total Synthesis of Lycopodium Alkaloids Palhinine A and Palhinine D. J. Am. Chem. Soc. 2017, 139, 4282 – 4285.
19. Curran, D. P.; Chang, C.-T. Atom Transfer Cyclization Reactions of -Iodo Esters, Ketones, and Malonates: Examples of Selective 5-Exo, 6-Endo, 6-Exo, and 7-Endo Ring Closures. J. Org. Chem. 1989, 54, 3140 – 3157.
20. Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley: New York, 1989; Chapter 5, pp 71 – 75.
21. Robinson, R. A Synthesis of Tropinone. J. Chem. Soc., Trans. 1917, 111, 762 – 768.
22. Medley, J. W.; Movassaghi, M. Robinson's Landmark Synthesis of Tropinone. Chem.Commun. 2013, 49, 10775 – 10777.
23. Willstätter, R. Synthesen in der Tropingruppe. I. Synthese des Tropilidens. Justus Liebigs Ann. Chem. 1901, 317, 204 – 265.
24. Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Collective Synthesis of Natural Products by Means of Organocascade Catalysis. Nature 2011, 475, 183 – 188.
25. (a) Liao, C.-C.; Peddinti, R. K. Masked o-Benzoquinones in Organic Synthesis. Acc. Chem. Res. 2002, 35, 856 – 866. (b) Harry, N. A.; Saranya, S.; Krishnan, K. K.; Anilkumar, G. Recent Advances in the Chemistry of Masked Ortho‐Benzoquinones and Their Applications in Organic Synthesis. Asian J. Org. Chem. 2017, 6, 945 – 966.
26. Gao, S.-Y.; Lin, Y.-L.; Rao, P. D.; Liao, C.-C. Diels-Alder Reactions of Masked o-Benzoquinones with Electron-rich Dienophiles. Highly Regio- and Stereoselective Synthesis of Bicyclo[2.2.2]octenone Derivatives. Synlett. 2000, 421 – 423.
27. Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, S.; Song, L.-D.; Shiao, H.-C. Generation, Stability, Dimerization, and Diels-Alder Reactions of Masked o-Benzoquinones. Synthesis of Substituted Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J. Org. Chem. 1999, 64, 4102 – 4110.
28. Chen, Y.-K.; Peddinti, R. K.; Liao, C.-C. Diastereoselective Intramolecular Diels-Alder Reactions of Masked o-Benzoquinones: A Short Entry to Highly Functionalized Tricyclic [m.2.2.0] Ring Systems. Chem. Commun. 2001, 1340 – 1341.
29. Lee, T.-H.; Rao, P. D.; Liao, C.-C. Photochemistry of Bicyclo[2.2.2]octenones: An Uncommon Oxidative Decarbonylation. Chem. Commun. 1999, 801 – 802.
30. (a) Liao, C.-C.; Wei, C.-P. Synthetic Applications of Masked o-Benzoquinones. A Novel Total Synthesis of (±)Forsythide Aglucone Dimethyl Ester. Tetrahedron Lett. 1989, 30, 2255 – 2256. (b) Chu, C.-S.; Liao, C.-C.; Rao, P. D. A Formal Synthesis of (±)-Reserpine from Methyl Vanillate. Chem. Commun. 1996, 1537 – 1538. (c) Lee, T.-H.; Liao, C.-C. Stereoselective Synthesis of (±)-(13E)-2- Oxo-5-cis-17,20-cleroda-3,13-dien-15-oic Acid, and Alleged cis-Clerodane Diterpenic Acid. Tetrahedron Lett. 1996, 37, 6869 – 6872. (d) Liu, W.-C.; Liao, C.-C. A New and Highly Stereoselective Approach to cis-Clerodanes. Synlett. 1998, 912 – 914. (e) Liu, W.-C.; Liao, C.-C. The First Total Synthesis of (±)-Pallescensin B. Chem. Commun. 1999, 117 – 118. (f) Hsu, D.-S.; Hsu, P.-Y.; Liao, C.-C. The First Total Synthesis of (±)-Eremopetasidione. Org. Lett. 2001, 3, 263 – 265. (g) Yen, C.-F.; Liao, C.-C. Concise and Efficient Total Synthesis of Lycopodium Alkaloid Magellanine. Angew. Chem. Int. Ed. 2002, 41, 4090 – 4093. (h) Hsu, D.-S.; Liao, C.-C. Total Syntheses of Sesterpenic Acids: Refuted (±)-Bilosespenes A and B. Org. Lett. 2003, 5, 4741 – 4743. (i) Liao, C.-C. Masked o-Benzoquinone Strategy in Organic Synthesis: Short and Efficient Construction of cis-Decalins and Linear Triquinanes from 2-Methoxyphenols. Pure Appl. Chem. 2005, 77, 1221 – 1234.
31. (a) 蕭暉議,壹:天然物(±)-Annuionone B與 (±)-Tanarifuranonol之全合成; 貳:新穎抗流行性感冒病毒藥物之發展研究,博士論文,國立清華大學,2009年。 (b) Shiao, H.-Y.; Hsieh, H.-P.; Liao, C.-C. First Total Syntheses of (±)-Annuionone B and (±)-Tanarifuranonol. Org. Lett. 2008, 10, 449 – 452.
32. Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Recent Contributions from the Baylis-Hillman Reaction to Organic Chemistry. Chem. Rev. 2010, 110, 5447 – 5674.
33. (a) Yoshida, M.; Higuchi, M.; Shishido, K. Stereoselective Construction of Substituted Chromans by Palladium-Catalyzed Cyclization of Propargylic Carbonates with 2-(2-Hydroxyphenyl)acetates. Org. Lett. 2009, 11, 4752 – 4755. (b) Devi, R.; Das, J.; Sarma, B.; Das, S. K. Phenolate-Induced Intramolecular Ring-Opening Cyclization of N-Tosylaziridines: Access to Functionalized Benzoxacycles. Org. Biomol. Chem. 2018, 16, 5846 – 5858.
34. (a) Vedejs, E.; Stults, J. S. Synthesis of Azocine Derivatives from Thio Aldehyde Diels-Alder Adducts. J. Org. Chem. 1988, 53, 2226 – 2232. (b) Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman M. Design, Synthesis, and Biological Evaluation of Cytotoxic 11-Aminoalkenylindeno- isoquinoline and 11-Diamino- alkenylindenoisoquinoline Topoisomerase I Inhibitors. Bioorg. Med. Chem. 2004, 12, 5147 – 5160.
35. (a) Narender, P.; Ravikumar, K.; Rao, V. J. Baylis-Hillman Adducts between Pyridine Carboxaldehyde Derivatives and Cyclic Enones. Tetrahedron 2006, 62, 954 – 959. (b) Shi, M.; Jiand, J.-K.; Li, C.-Q. Lewis Base and L-Proline co-Catalyzed Baylis-Hillman Reaction of Arylaldehydes with Methyl Vinyl Ketone. Tetrahedron Lett. 2002, 43, 127 – 130.
36. Shi, M.; Liu, Y.-H. Traditional Morita-Baylis-Hillman Reaction of Aldehydes with Methyl Vinyl Ketone co-Catalyzed by Triphenylphosphine and Nitrophenol. Org. Biomol. Chem. 2006, 4, 1468 – 1470.
37. Lin, H.-Y.; Causey, R.; Garcia, G. E.; Snider, B. B. Synthesis of (±)-7-Hydroxy- lycopodine. J. Org. Chem. 2012, 77, 7143 – 7156.
38. Yamamoto, T.; Harigaya, Y.; Okawara, M. Preparation and Reactions of S,S-Dimethyl-N-(2,4-Dinitrophenyl)Sulfilimine. Tetrahedron 1978, 34, 3097 – 3103.
39. (a) Hiraki, Y.; Kamiya, M.; Tanikaga, R.; Ono, N.; Kaji, A. Reaction of Dimethyl Sulfoxide-Trifluoroacetic Anhydride with Anilines, Phenols, and Thiophenols. Bull. Chem. Soc. Jpn. 1977, 50, 447 – 452. (b) Yamamoto, T.; Okawara, M. A New Route to o-Methylthiomethylated Phenols by Use of S,S-Dimethyl- sulfilimines. Bull. Chem. Soc. Jpn. 1978, 51, 2443 – 2444.
40. Wells, G.; Lowe, P. R.; Stevens, M. F. G. Antitumor Benzothiazoles. 13. (Diacetoxy)iodobenzene (DAIB) oxidation of 2-(4-Hydroxy-3-methoxyphenyl)- benzothiazole and Related Compounds in the Presence of Dienophiles. ARKIVOC 2000, 779 – 797.
41. Chittimalla, S. K.; Shiao, H.-Y.; Liao, C.-C. Domino Retro Diels-Alder/Diels- Alder Reaction: An Efficient Protocol for the Synthesis of Highly Functionalized Bicyclo[2.2.2]octenones and Bicyclo[2.2.2]octadienones. Org. Biomol. Chem. 2006, 4, 2267 – 2277.
42. (a) Lai, C.-H.; Shen, Y.-L.; Liao, C.-C. Synthesis of Stable Bromo-substituted Masked o-Benzoquinones and their Application to the Synthesis of Bicyclo[2.2.2]octenones. Synlett. 1997, 1351 – 1352.; (b) Lai, C.-H.; Shen, Y.-L.; Wang, M.-N.; Rao, N. S. K.; Liao, C.-C. Intermolecular Diels-Alder Reactions of Brominated Masked o-Benzoquinones with Electron-Deficient Dienophiles. A Detour Method to Synthesize Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J. Org. Chem. 2002, 67, 6493 – 6502.
43. (a) Nicolaou, K. C.; Toh, Q.-Y.; Chen, D. Y.-K. An Expedient Asymmetric Synthesis of Platencin. J. Am. Chem. Soc. 2008, 130, 11292 – 11293. (b) Leung, G. Y. C.; Li, H.; Toh, Q.-Y.; Ng, A. M.-Y.; Sum, R. J.; Bandow, J. E.; Chen, D. Y.-K. Total Synthesis and Biological Evaluation of the Fab-Inhibitory Antibiotic Platencin and Analogues Thereof. Eur. J. Org. Chem. 2011, 183 – 196. (c) Cheng, H.; Xu, L.; Chen, D.-L.; Chen, Q.-H.; Wang, F.-P. Construction of Functionalized B/C/D Ring System of C19-Diterpenoid Alkaloids via Intramolecular Diels-Alder Reaction Followed by Wagner-Meerwein Rearrangement. Tetrahedron 2012, 68, 1171 – 1176. (d) Cheng, H.; Zeng, F.-H.; Yang, X.; Meng, Y.-J.; Xu, L.; Wang, F.-P. Collective Total Syntheses of Atisane-Type Diterpenes and Atisine-Type Diterpenoid Alkaloids: (±)-Spiramilactone B, (±)-Spiraminol, (±)-Dihydroajaconine, and (±)-Spiramines C and D. Angew. Chem. Int. Ed. 2016, 55, 392 – 396.
44. Zhao, S.; Wu, Y.; Sun, Q.; Cheng, T.-M.; Li, R.-T. Triphenylphosphine-N- Bromosuccinimide Mediated Chemoselective Cyclodehydration of Diols. Synthesis 2015, 47, 1154 – 1162.
45. 賴建勳,掩飾鄰苯醌與相關2,4-環己二烯酮的 Diels-Alder 反應之研究,博士論文,國立清華大學,2001年。
46. (a) Fox, M. E.; Lennon, I. C.; Meek, G. A Novel Synthesis of 5-Hydroxy- 2,2-dimethyl-10-propyl-2H-pyrano[2,3-f]chromen-8-one. Tetrahedron Lett. 2002, 43, 2899 – 2902. (b) Keck, G. E.; Wager, T. T.; Rodriquez, J. F. D. Total Syntheses of (-)-Lycoricidine, (+)-Lycoricidine, and (+)-Narciclasine via 6-exo Cyclizations of Substituted Vinyl Radicals with Oxime Ethers. J. Am. Chem. Soc. 1999, 121, 5176 – 5190.
47. (a) Chandrasekhar, S.; Basu, D.; Sailu, M.; Kotamraju, S. Novel Synthetic Route to the Tricyclic Core of (±)-Galanthamine. Tetrahedron Lett. 2009, 50, 4882 – 4884. (b) Dulla, B.; Tangellamudi, N. D.; Balasubramanian, S.; Yellanki, S.; Medishetti, R.; Banote, R. K.; Chaudhari, G. H.; Kulkarni, P.; Iqbal, J.; Reiser, O.; Pal, M. Isovanillin Derived N-(Un)Substituted Hydroxylamines Possessing an Ortho-Allylic Group: Valuable Precursors to Bioactive N-Heterocycles. Org. Biomol. Chem. 2014, 12, 2552 – 2558.
48. Leger, P. R.; Murphy, R. A.; Pushkarskaya, E.; Sarpong, R. Synthetic Efforts toward the Lycopodium Alkaloids Inspires a Hydrogen Iodide Mediated Method for the Hydroamination and Hydroetherification of Olefins. Chem. Eur. J. 2015, 21, 4377 – 4383.
49. Feng, Y.; Luo, Z.; Sun, G.; Chen, M.; Lai, J.; Lin, W.; Goldmann, S.; Zhang, L.; Wang, Z. Development of an Efficient and Scalable Biocatalytic Route to (3R)-3-Aminoazepane: A Pharmaceutically Important Intermediate. Org. Process Res. Dev. 2017, 21, 648 – 654.
50. Hsu, D.-S.; Chou, Y.-Y.; Tung, Y.-S.; Liao, C.-C. Photochemistry of Tricyclo[5.2.2.02,6]undeca-4,10-dien-8-ones: An Efficient General Route to Substituted Linear Triquinanes from 2-Methoxyphenols. Total Synthesis of (±)-Δ9(12)-Capnellene. Chem. Eur. J. 2010, 16, 3121 – 3131.
51. (a) Gong, J.; Chen, H.; Liu, X.-Y.; Wang, Z.-X.; Nie, W.; Qin, Y. Total Synthesis of Atropurpuran. Nat. Commun. 2017, 7, 12183. (b) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Cross-Coupling Reactions Using Samarium(II) Iodide. Chem. Rev. 2014, 114, 5959 – 6039.
52. (a) Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. Thiol-Catalyzed Acyl Radical Cyclization of Alkenals. J. Org. Chem. 2005, 70, 681 – 683. (b) Hsu, D.-S.; Chen, C.-H.; Hsu, C.-W. Synthesis of Spiranes by Thiol-Mediated Acyl Radical Cyclization. Eur. J. Org. Chem. 2016, 2016, 589 – 598.
53. Davis, F. A.; Vishwakarma, L. C.; Billmers, J. G.; Finn, J. Synthesis of -Hydroxycarbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfonyloxaziridines. J. Org. Chem. 1984, 49, 3241 – 3243.
54. Chen, C.-M.; Shiao, H.-Y.; Uang, B.-J.; Hsieh, H.-P. Biomimetic Syntheses of (±)-Isopalhinine A, (±)-Palhinine A, and (±)-Palhinine D. Angew. Chem. Int. Ed. 2018, 57, 15572 – 15576.
55. Carreira, E. M.; Richter M. J. R. Synthesis of Isopalhinine A and Palhinine D. Synfacts 2019, 15, 1.
56. Lal, K.; Ghosh, S.; Salomon, R. G. Hydroxyl-Directed Regioselective Mono- demethylation of Polymethoxyarenes. J. Org. Chem. 1987, 52, 1072 – 1078.
57. Okazaki, M.; Shuto, Y. Stereoselective Synthesis of the Neolignan, (+)-Dehydro- diconiferyl Alcohol. Biosci. Biotechnol. Biochem. 2001, 65, 1134 – 1140.
58. Seidel, J. L.; Epstein, W. W.; Davidson, D. W. Neotropical Ant Gardens: I. Chemical Constituents. J. Chem. Ecol. 1990, 16, 1791 – 1816.
59. Danishefsky, S. J.; Harrison, P. J.; Webb II, R. R.; O'Neil, B. T. The Total Synthesis of Quinocarcinol Methyl Ester. J. Am. Chem. Soc. 1985, 107, 1421 – 1423.