研究生: |
游一成 |
---|---|
論文名稱: |
主鏈型含2,7-咔唑高分子之非線性光學及光物理特性研究 Nonlinear optical and Photophysical behavior of 2,7-carbazole based polymer |
指導教授: | 薛敬和 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 主鏈型系統 、咔唑高分子 、非線性光學 、全共軛結構 |
外文關鍵詞: | main-chain system, 2,7-carbazole based polymer, NLO, conjugate structure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討發色團嵌入於主鏈全共軛結構是否對非線性光學有提升的效果。以poly(N-vinylcarbazole)(PVK)與poly(2,7-carbazole) (PCz)選擇適當的溶劑進行硝基化反應,合成出相近的硝基比率之非線性光學高分子(PVKNO2與PCzNO2)。熱性質測量(TGA、DSC)均顯示具主鏈剛硬特性之PCzNO2有較高的熱穩定性。在極化過程中,PCzNO2有較高的有效二次諧波(SH)數值,因此證明發色團嵌入於主鏈的全共軛結構對於非線性光學係數確實有增強的功用。
另外,本研究以單一發色團利用Yamamoto聚合方法,成功的合成出具含2,7-咔唑之非線性光學高分子(PCzCCSO2),其達到近100%發色團對單一高分子比。在溶解度方面,即使具有高密度之發色團組成仍易溶於THF、DMF、DMSO以及NMP等溶劑。在熱性質方面,藉由主鏈上延伸剛硬的stilbene結構以及立體體積大的磺醯基,以提升高分子間的嵌合效應以及分子旋轉所需的自由體積,測得其玻璃轉移溫度為140℃。在非線性光學方面,因具有發色團含量高與主鏈共軛結構等優勢,故在雷射波長為1064nm下,得出優異的倍頻非線性光學係數d33值為45.6pm/V、d31=10.2 pm/V。在時間穩定性上,於85℃下經過200小時,仍維持原來的76%數值。
Second-order nonlinear optical (NLO) materials have attracted interest because of their potential applications in optoelectronic technology. In this work, conjugated and non-conjugated backbone NLO polymers were prepared by nitrogenation reaction from PCZ and PVK. EA analysis shows the two NLO polymers contained approximate nitro ratio. In preliminary study, PCzNO2 had higher SH intensity in corona field. Therefore, second harmonic property may become stronger by adding donor-acceptor substitution to pi-conjugate polymers.
A new strategy for self-polymerization performed on chromophore has been explored to develop 2,7-carbazole-based NLO polymer with a high density of chromophores. It had excellent solubility in common organic solvents, such as THF, DMSO, DMF and NMP, etc. The DSC thermograms of polymer exhibited a glass transition (Tg) at about 140 °C. After poling, large second harmonic coefficients of 45.6 pm/V was found for PCzCCSO2. Fast relaxation of the effective SH coefficient was observed at temperatures higher than 110 ℃. The temporal stability was investigated by tracing the second harmonic coefficient as functions of temperature and time, respectively. It remained 76% over 200 h at 85℃.
1.P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys.Rev. Lett ,1961, 7, 118.
2.T. Suhara, and H. Nishihara, IEEE J. Quant. Elect, 1990, 26, 1265
3.D. Girton, S. Kwiatkowski, G. Lipscombe, and R. Lytel, Appl. Phys. Lett, 1991, 58, 1730.
4.K. Lizuka, Spriger Series in Optical Science 35:Engineering Optics 2nd Edition, Springer-Verlag, 1985.
5.N. Prazad, and D. J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymer, John Willey and Sons, New York, 1987.
6.G. Zerbi, European Materials Research Society Monograph vol.6:Organic Materials for Photonics – Science and Technology, North-Holland, 1993.
7.J. L.Oudar, and D. S. J. Chemla,. Chem. Phys , 1977, 66, 2664.
8.A. Dulcic, C. Flytzanis, C. L. Tang, D. Pepin, M. Fitzon, and Y. Hoppiliard, J. Chem. Phys, 1981, 74, 1559.
9.G. Berkovic, Y. R. Shen, and M. Schadt, Mol. Cryst. Liq. Cryst, 1987, B150, 607.
10.D. R. Kanis, T. J. Marks and M. A. Ratner, Mol. Cryst. Liq. Cryst.Sci. Technol.-Sec. B: Nonlinear Opt.
11.C. M. Whitaker, E. V. Patterson, K. L. Kott, and R. J. McMahon, J. Am. Chem. Soc., 1996, 118, 9966.
12.S. Priyadarshy, M. J. Therien, and D. N. Beratan, J. Am. Chem. Soc, 1996, 118, 1504.
13.J. Zyss, I. Ledoux, S. Volkov, V. Chernyak, S. Mukamel, G. P. Bartholomew, and G. C. Bazan, J. Am. Chem. Soc, 2000, 122, 11956.
14.M.Yang, and B. Champagne, J. Phys. Chem. A, 2003, 107, 3942.
15.C. Xu, B. Wu, L. R. Dalton, P. M. Ranon, Y. Shi, and W. H. Steier, Macromolecules, 1992, 25, 6716.
16.C. Xu, B. Wu, and L. R. Dalton , Macromolecules, 1992, 25, 6716.
17.I. Teraoka, D. Jungbauer, B. Reck, D. Yoon, R. Twieg, and C. Willson, J. Appl. Phys., 1991, 69, 2568.
18.D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, and C. Willson, J. Appl. Phys., 1991, 69, 8011.
19.R. D. Miller, D. M. Burland, M. Jurich, V. Y. Lee, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest, and W. Volksen, Macromolecules, 1995, 28, 4970.
20.M. H. Davey, V. Y. Lee, L. M. Wu, C. R. Moylan, W. Volksen, A. Knoesen, R. D. Miller, and T. J. Marks, Chem. Mater., 2000, 12, 1679.
21.G . Lindsay, R. Henry, and S. Smith, J. SPIE Proc, 1993, 1775, 144.
22.W. J. Kuo, G. H. Hsiue, and R. J. Jeng, Macromol. Rapid Commun. 2001, 22, 601.
23.X. T. Tao, T. Watanabe, S. Shimoda, D. C. Zou, H. Sato, and S. Miyata, Chem. Mater. 1994, 6, 1961.
24.Y. Zhang, L. Wang, T. Wada, and H. Sasabe , Macromolecules, 1996, 29, 1569.
25.W. J. Kuo, G. H. Hsiue, and R. J. Jeng, Macromolecules, 2001, 34, 2373.
26.J. Luo, J. Qin, H. Kang, and C. Ye, Chem. Mater., 2001, 13, 927.
27.M. Panda, and J. Chandrasekhar, J. Am. Chem. Soc. 1998, 120, 13517.
28.D. K. Taylor, and E. T. Samulski, Macromolecules, 2000, 33, 2355.
29.M. Leclerc, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867.
30.M. Hidai, T. Kashiwagi, T. Ikeuchi, and Y. Uchida, J. Organometal. Chem., 1971, 30, 279 .
31.L. N. Ferguson, Electron Structure of organic Molecules, Prentice- Hall, Englewood Cliffts, N. J., 1952, p 278.
32.K. Y. Peng, S. A. Chen, and W. S. Fann, J. Am. Chem. Soc. 2001, 123, 11388.
33.S. H. Lee, B. B. Jang, and T. Tsutsui, Macromolecules 2002, 35, 1356.
34.H. Saadeh, L. Wang, and L. Yu, Macromolecules, 2000, 33, 1570.
35.H. J. Lee, S. J. Kang, H. K. Kim, H. N. Cho, J. T. Park, and S. Kwon Choi, Macromolecules 1995, 28, 4638.
36.Z. Li, C. Huang, J. Hua, J. Qin, Z. Yang, and C.Ye, Macromolecules 2004, 37, 371.
37.W. K. Chan, and L. Yu, Macromolecules. 1996, 28, 6410.
38.D. R. Robello, P. T. Dao, J. Phelan, and J. Revelli, Chem. Mater. 1992, 4, 425.
39.N. Nemoto, F. Miyata, and Y. Nagase, Chem. Mater. 1997, 9, 304.
40.H. Ma, B. Chen, T. Sassa, L. R. Dalton, and A. K.Y. Jen, J. Am. Chem. Soc. 2001, 123, 986.
41.B. Liu, W. L. Yu,Y. H. Lai, and W. Huang, Chem. Mater. 2001, 13, 1984.
42.C. Xia, and R. C. Advincula, Macromolecules 2001, 34, 5854.
43.Jaffe, H. Hans, Orchin, and Milton, Theory and applications of ultraviolet spectroscopy ,1962.
44.X. Kong, A. P. Kulkarni, and S. A. Jenekhe, Macromolecules 2003, 36, 8992.
45.C. R. Moylan, R. J. Twieg, V. Y. Lee, S. A. Swanson, K. M. Betterton, and R. D. Miller, J. Am. Chem. Soc. 1993, 115, 12599.
46.S. Gilmour, R. A. Montgomery, S. R. Marder, L. T. Cheng, A. K-Y. Jen, Y. Cai, J. W. Perry, and L. R. Dalton, Chem. Mater. 1994, 6, 1603.
47.R. Rathore, H. S. Abdelwahed, and I. A. Guze , J. Am. Chem. Soc 125, 8712.
48.S. Ohnishi, F. L. Gu, K. Naka, A. Imamura, B. Kirtman, and Y. Aoki, J. Phys. Chem. A. 2004, 108, 8478.
49.J. Luo, M. Haller, H. Li, T.-D.Kim, and A. K.-Y.Jen, Adv. Mater. 2003, 15, 1635.
50.S. D. Bella', I. Fragali', I. Ledoux, A. Maria, D. Garcia , P. G. Lacroix, and T. J. Marks', Chem. Mater. 1994, 6, 881.
51.K. Singer, M. Kuzyk, and J. Sohn, J. Opt. Soc. Am. B. 1987, 4, 968.
52.H. Katz, K. Singer, J. Sohn, C. Dirk, L. King, and H. Gordon, J. Am. Chem. Soc. 1987, 109, 968.
53.S. Barlow, H. E. Bunting, C. Ringham, J. C. Green, G. U. Bublitz, S. G. Boxer, J. W. Perry, and S. R. Marder, J. Am. Chem. Soc. 1999, 121, 3715.