研究生: |
趙珍誼 Chao, Chen I |
---|---|
論文名稱: |
平板型閉迴路脈衝式熱管性能與擴散熱阻參數量測及其應用之研究 A Study of the Performance and Spreading Thermal Resistance Measurements for Flat-Plate Closed Type PHP and Its Applications |
指導教授: |
林唯耕
Lin, Wei Keng |
口試委員: |
陳紹文
Chen, Shao Wen 林鴻文 Lin, Hung Wen 鄒蘊明 Tzou, Yeun Ming 余培煜 Yu, Pei Yu |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 128 |
中文關鍵詞: | 平板型脈衝式熱管 、擴散熱阻 、Angstrom method 、擴散熱傳導係數 |
外文關鍵詞: | Flat-Plate Closed-Loop Pulsating Heat Pipes, hermal Spreading Resistance, Angstrom method, Spreading thermal conductivity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
解凍板為商業市售之熱管應用產品,傳統式解凍板是將熱管壓扁及折彎,密合於兩片鋁板之間,再用錫膏做黏合及封口動作,以增加熱傳導。雖然目前有各種設計的傳統式熱管,近期業界逐漸反應使用這些傳統設計熱管所遭遇到的局限性。在過去的十年,許多前瞻的冷卻技術被提出來討論,脈動式或環型式熱管就是在這個領域裡的新興技術。由於良好的操作特點及相對便宜的成本,脈動式熱管可能成為滿足未來電子元件冷卻系統的解決方案選項之一。
本論文使用脈動式熱管來取代傳統式熱管並應用在解凍板上,首先對脈動式熱管最佳化設計進行分析,並進一步應用所分析的最佳參數來實現解凍板的設計,包括執行解凍板的性能評估。此外,文章內亦探討Angstrom method理論模型應用在均溫板之量測可行性,例如均溫板的擴散熱傳導係數,我們將Angstrom method理論模型分類為一維和二維兩個模式的理論,分別進行分析。
最後依照實際業界之需求,以Angstrom method理論模型為基礎設計一熱擴散量測平台及比熱容量測系統,此平台以致冷晶片搭配程式控制器來做控溫,並且以Visual Basic和PLC可程式控制器開發出一套熱擴散量測程式來對均溫板做可行性之研究。為了證明Angstrom method理論模型的準確性,設計厚寬比實驗,並採用上述所開發的量測平台及系統進行驗證。
Defrosting plates are among the heat pipe application products currently available on the market. Traditional defrosting plates are made by flattening and bending the heat pipes, which are then tightly sealed between two aluminum plates. A solder paste is then used for adhesion and sealing to increase heat conduction. Although various designs of classical heat pipes are available, recently industry trends have frequently shown the limitations of these conventional designs. In the past decade several emerging cooling technologies are demonstrated and pulsating or loop-type heat pipes (PHP) represents one such field of investigation. This range of device is projected to meet all present and possibly future specific requirements of the electronics cooling industry, owing to favorable operational characteristics coupled with relatively cheaper costs.
This study adopted a design using pulsating heat pipes to substitute for the design using traditional heat pipes and further applied abovementioned parameters to implement the development of defrosting plates including their performances evaluation. And more, to investigate the feasibility of using the Angstrom method theoretical model for measuring the spreading thermal conductivity in PHPs. The Angstrom method was classified into a 1-D model and a 2-D model and theoretical analyses of both modes were conducted respectively.
According to practical industrial requirements, both thermal diffusivity measurement platform and specific heat capacity measurement system were designed. A spreading thermal conductivity measuring platform that utilized cooling modules with programmed modulators to provide temperature modulation was designed, and Visual Basic and PLC-programmable modulators were used in the development of a spreading thermal conductivity measuring program for the feasibility studies involving PHPs. In order to prove the precision of the Angstrom model by the design of the thickness-to-width ratio experiments applied in the abovementioned measurement platform and system.
[1] S. M. Sze, Physics of Semiconductor Devices, John Wily & Sons, Inc., 1985.
[2] R. F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Company, Inc., 1996.
[3] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era, Lattice Press, 1986.
[4] Yuan Taur and Tak H. Ning, fundamentals of Modern VLSI Devices, Cambridge University Press, 1998.
[5] Wikipedia, at http://en.wikipedia.org/wiki/Moore%27s_law
[6] Extremetech, at http://www.extremetech.com/computing/95913-koomeys-law-replacing-moores-focus-on-power-with-efficiency
[7] Philip Ball., “Computer Engineering: Feeling the Heat”, Nature, Vol. 492, pp. 174-176, 2012.
[8] Digi-key, at http://www.digikey.com/en/articles/techzone/2011/may/driving-leds-how-to-choose-the-right-power-supply
[9] Wikipedia, at http://en.wikipedia.org/wiki/Light-emitting_diode
[10] Wikipedia, at http://en.wikipedia.org/wiki/Heat_sink
[11] Andavced Thermal solutions, at http://qats.com/cms/wp-content/uploads/2011/10/spreading_resistance_figure_8.png
[12] Overclock3D,at http://www.overclock3d.net/reviews/systems/msi_turbobook_gx600_gaming_notebook/4
[13] Gixia Group, at http://tw.thatinventions.com/collections/all/products/thawthat-ii
[14] Akachi H., US patent, Number 5219020, 1993.
[15] Akachi H., US patent, Number 5490558, 1996
[16] Akachi H., Polasek F. and Stulc P., Pulsating Heat Pipes, Proc. 5th Int. Heat Pipe Symp., Melbourne pp.208-217, 1996
[17] H. Yang, “Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes”, 13th International Heat Pipe Conference (13th IHPC), Shanghai, China, September 21-25, 2004.
[18] Khandekar S., Schneider M., Schäfer P., Kulenovic R. and Groll M., “Thermo fluid dynamic Study of Flat Plate Closed Loop Pulsating Heat Pipes, Micro-scale Thermo physical Eng.”, Vol. 6/4, pp. 303-318, 2002.
[19] Akachi H., Polášek F. and Štulc P., “Pulsating Heat Pipes”, Proc. 5th Int. Heat Pipe Symp., Melbourne, pp. 208-217, 1996.
[20] R. Boukhanouf , A. Haddad , M.T. North , C. Buffone ,“Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera”, Applied Thermal Engineering vol.26,pp2148–2156.
[21] Sameer Khandekar , Manfred Groll, “An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes”, International Journal of Thermal Sciences,vol 43, pp.13–20
[22] Kwang-SooKim, ”Heat pipe cooling technology for desktop PC CPU ”, Applied Thermal Engineering ,vol.23 ,pp1137-1144,2003.
[23] Electronics Cooling, at http://www.electronics-cooling.com/2003/05/an-introduction-to-pulsating-heat-pipes/
[24] Kanamori H, Mizutani H, Fuji N. Method of Spreading thermal conductivity Measurement. Journal of Physics of Earth 1969; 17(1).
[25] Parrott JE, Stuckes AD. Thermal Conductivity of Solids. Pion LimitedL London, 1975.
[26] Wagoner G, Skokova KA*, Levan CD*. Angstrom’s method for thermal property measurements of carbon fibers and composites“, Wagoner Enterprises, Inc. 26564 Lake Road, Bay Village, OH 44140, *BP Amoco Polymers, Inc., 4500 McGinnis Ferry Road, Alpharetta, GA 30005, 1999.
[27] Utrillas MP, Pedros R, Martinez-Lozano JA. A new method for determining the angstrom Turbidity coefficient from broadband filter measurements. Manuscript received 13 November 1998, in final form 30 June 1999.
[28] Bouchard AM. Angstrom’s Method of Determining Thermal Conductivity. Physics Department, The College of Wooster, Ohio 44691 May 4, 2000.
[29] Lytle AL. Angstrom method of Measuring Thermal Conductivity. Physics Department, the College of Wooster, Ohio 44691 May 5, 2000.
[30] Bretherton. F.P., “The Motion of Long Bubbles in Tubes”, J. Fluid Mech., vol.10, pp167-188, 1961.
[31] Zukoski. E.E., “Influence of Viscosity, Surface Tension, and Inclination Angle on Motion of Long Bubbles in Closed Tubes”, J. Fluid Mech., vol.25, pp821-837, 1966.
[32] Bendiksen. K.H., “An Experimental Investigation of the Motion of Long Bubbles in Inclined Tubes”, Int. J. Multiphase Flow, vol.10, no. 4, pp467-483, 1984.
[33] Bendiksen. K.H., “On The Motion of Long Bubbles in Vertical Tubes”, Int. J. Multiphase Flow, vol.11, no. 6, pp795-812, 1985.
[34] Bendiksen. K.H., “Some Characteristics of Air-water Two-phase Flow in Small Diameter Vertical Tubes”, Int. J. Multiphase Flow, vol.22, no. 4, pp703-712, 1996.
[35] Clanet C., Heraud P. and Searby G., “On the Motion of Bubbles in Vertical Tubes of Arbitrary Cross-sections: Some Complements to the Dumitrescu–Taylor Problem”, J. Fluid Mech., vol.519, pp359-376, 2004.
[36] Wikipedia, at http://en.wikipedia.org/wiki/Buoyancy
[37] Harmathy T. Z., “Velocity of Large Drops and Bubbles in Media of lnfinite or Restricted Extent”, A.I.Ch.E. Journal, vol. 6, no. 2, pp. 281-288, 1960.
[38] Wallis G. and Heasley J., “Oscillations in Two-Phase Flow Systems”, J. Heat Transfer, pp. 363-369, 1961.
[39] Sameer Khandear, “Thermo-hydrodynamics of Closed Loop Pulsating Heat Pipes”, Jul. 2014.
[40] White E. and Beardmore R., “The velocity of Rise of Single Cylindrical Air Bubbles Through Liquids Contained in vertical Tubes”, Chem. Eng. Science, vol. 17, pp. 351-361, 1962.
[41] C. Borgnakke and R. E. Sonntage, Fundamentals of Thermodynamics, John Wily & Sons, Inc., 2008.
[42] Yovanovich, M., Muzychka, Y. and Culham, J., “Spreading Resistnace of Isoflux Rectangules and Strips on Compound Flux Channels”, J. Thermophys Heat Transfer, Vol. 13, No. 4, pp. 495-500, 1999.
[43] Ellison, G., “Maximum Thermal Spreading Resistance for Rectangular Sources and Plates With Nonunity Aspect Ratios”, IEEE Trans. Comp., Hybrids, Manufac. Technol., Vol. 26, No. 2, 2003.
[44] Lee, S., Song, S., Au, V., and Moran, K.P., “Constriction/Spreading Resistance Model for Electronic Packaging,” Proceedings of ASME/JSME Engineering Conference, Vol. 4, 1995.
[45] Wikipedia, at http://en.wikipedia.org/wiki/Heat_capacity