研究生: |
李昱德 Li, Yu-Te |
---|---|
論文名稱: |
銅銦鎵硒太陽能模組電池之串聯電阻量測方法設計與分析應用 Design and characterization of series resistance measurement technology for CIGS module cell and its applications |
指導教授: |
甘炯耀
Gan, Jon-Yiew |
口試委員: |
賴志煌
Lai, Chih-Haung 徐偉倫 Xu, Wei Lun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 銅銦鎵硒太陽能電池 、串聯電阻 、P2接觸電組 、TCO片電阻 、其他部位剩餘電阻 |
外文關鍵詞: | CIGS Solar cell, Series resistance, P2 contact resistance, TCO sheet resistance, Residual resistance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
串聯電阻對薄膜類型的太陽能電池電性來說是不能忽視的一環,而串聯電阻的分析需要利用許多種的模型來進行計算,故我們分成三個部份來解析串聯電阻。
第一部分是M-TLM模型,文獻中提到此方法可以利用模組電池就能量測到P2區域的接觸電阻,不用刻意設計其他結構即能量測,但由於此方法對CIGS的寬度沒有做出限制且沒有解決寄生電阻在量測中如何去除,所以我們利用推導論證出若要使用此結構需要有一定的條件,以此來獲得正確的TCO片電阻與P2接觸電阻。
第二部分是解構CIGS電池的串聯電阻,利用Matlab擬合軟體來進行IV擬合得到Voc、Jsc、FF、Efficiency、Rs、Rsh...等等參數,再經由分析串聯電阻,將之前所述之TCO、Mo片電阻與P2接觸電阻之貢獻扣除,我們便能得到剩餘與電池面積這項因素無關之串聯電阻有多少貢獻。
第三部分是光浸潤效應對電池優化後各參數的解構。許多PV模組的效率會因為照光而讓整個電池模組有所改善,這個現象便被稱之為光浸潤效應(Light Soaking Effect)。我們可以利用前面的方法來分析進行光浸潤之後,其對參數的影響,還能分析各部位電阻對應光浸潤效應是否有所變化。
建立了此量測方法之後,對CIGS太陽能電池進行任何實驗都能利用此法來分析實驗對電池各處電阻所造成之影響。
The series resistance is a part that cannot be ignored for the electrical properties of CIGS thin-film solar cells, and the analysis of series resistance requires the calculation of many models, so we divide it into three parts to analyze the series resistance.
The first part is the M-TLM model. It is mentioned in the literature that this method can use the solar cell module to measure the contact resistance in the P2 region without designing other structures. However, this method does not limit the width of CIGS and does not solve how to remove the parasitic resistance in the measurement, we use derivation to demonstrate that certain conditions are required to use this structure, in order to obtain the correct TCO sheet resistance and P2 contact resistance.
The second part is to deconstruct the series resistance of the CIGS module cell. We utilize Matlab fitting software to fit the light current of CIGS, obtain Voc, Jsc, FF, Efficiency, Rs, Rsh...etc. Then we analyze the series resistance. Subtracting the contribution of the TCO, Mo sheet resistance and P2 contact resistance mentioned above, we can get the contribution of the remaining series resistance that is not related to the factor of battery area.
The third part is the deconstruction of the optimized parameters of CIGS by light soaking effect. The efficiency of many PV modules will be improved by illumination. This phenomenon is called the Light Soaking Effect. We can use the previous method to analyze the effect of light soaking on the parameters, and also analyze whether the resistance of each part has changed according to the light soaking effect.
After establishing this measuring method, any experiment on CIGS solar cells can use this method to analyze the change of the resistance of the experiment.
[1] I. r. e. agency, "Global levelized cost of electricity from utility-scale renewable power generation technology 2010-2017," 2018.
[2] 太陽能電池分類. Available: https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[3] NREL. Best Research-Cell Efficiency Chart. Available: https://www.nrel.gov/pv/cell-efficiency.html
[4] T. Kato, "Recent research progress of high-efficiency CIGS solar cell in solar frontier," in 7th International Workshop on CIGS Solar Cell Technology (IW-CIGSTech 7) 32nd EU PVSEC, 2016.
[5] TEP. (2018). Introduction to PN Junction. Available: https://www.theengineeringprojects.com/2018/05/introduction-to-pn-junction.html
[6] M. Shanawani, D. Masotti, and A. Costanzo, "THz Rectennas and Their Design Rules," Electronics, vol. 6, no. 4, 2017.
[7] М. Семёнова. (2017). Iv Characteristics Of Solar Cell Available: http://solarcellanatsuga.blogspot.com/2017/01/iv-characteristics-of-solar-cell.html
[8] N. T. a. E. S. o. Sandia. (2018). Single Diode Equivalent Circuit Models. Available: https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/diode-equivalent-circuit-models/
[9] PVeducation. (2019). Double Diode Model. Available: https://www.pveducation.org/pvcdrom/characterisation/double-diode-model
[10] Y. J. P. E.-C. T. Tao and Applications, "Screen‐Printed Front Junction n‐Type Silicon Solar Cells," 2016.
[11] J. Ramanujam, U. P. J. E. Singh, and E. Science, "Copper indium gallium selenide based solar cells–a review," vol. 10, no. 6, pp. 1306-1319, 2017.
[12] L. L. Kazmerski, F. R. White, and G. K. Morgan, "Thin‐film CuInSe2/CdS heterojunction solar cells," Applied Physics Letters, vol. 29, no. 4, pp. 268-270, 1976.
[13] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, "High‐efficiency CuInxGa1−xSe2solar cells made from (Inx,Ga1−x)2Se3precursor films," Applied Physics Letters, vol. 65, no. 2, pp. 198-200, 1994.
[14] W. N. S. e. al., ""Cu(InGa)Se2 Solar Cells", p.553, Handbook of Photovoltaic Science and Engineering," 2011.
[15] H. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter, and H. W. Schock, "Influence of substrates on the electrical properties of Cu(In,Ga)Se/sub 2/ thin films," in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), 1994, vol. 1, pp. 156-159 vol.1.
[16] Z. Gao et al., "Study on the performance of Tungsten–Titanium alloy film as a diffusion barrier for iron in a flexible CIGS solar cell," vol. 120, pp. 357-362, 2015.
[17] P. Salomé, J. Malaquias, P. Fernandes, and A. J. J. o. P. D. A. P. Da Cunha, "Mo bilayer for thin film photovoltaics revisited," vol. 43, no. 34, p. 345501, 2010.
[18] R. Chang and B. J. A. S. L. Shih, "Effects of Molybdenum Electrode Layers on Performance of CIGS Thin Film Solar Cells," vol. 8, no. 1, pp. 147-152, 2012.
[19] X. Zhu et al., "Determining factor of MoSe2 formation in Cu (In, Ga) Se2 solar cells," vol. 101, pp. 57-61, 2012.
[20] W. Shockley and H. J. J. J. o. a. p. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," vol. 32, no. 3, pp. 510-519, 1961.
[21] D. Hariskos et al., "New reaction kinetics for a high‐rate chemical bath deposition of the Zn (S, O) buffer layer for Cu (In, Ga) Se2‐based solar cells," vol. 20, no. 5, pp. 534-542, 2012.
[22] M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, and T. Nakada, "Achievement of 19.7% efficiency with a small-sized Cu (InGa)(SeS) 2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer," in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013, pp. 0849-0852: IEEE.
[23] M. Powalla et al., "Large-area CIGS modules: Pilot line production and new developments," Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 3158-3164, 2006.
[24] J. H. Yoon et al., "Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping," vol. 22, no. 1, pp. 90-96, 2014.
[25] J.-H. Yoon, J.-K. Park, W. M. Kim, J. Lee, H. Pak, and J.-h. J. S. r. Jeong, "Characterization of efficiency-limiting resistance losses in monolithically integrated Cu (In, Ga) Se 2 solar modules," vol. 5, no. 1, pp. 1-9, 2015.
[26] D. K. Schroder, "Semiconductor Material and Device Characterization. Third Edition.," 2006.
[27] L. J. v. d. Pauw, "A method of measuring specific resistivity and Hall effects of discs of arbitrary shape," Philips Research Reports, 13, 1-9, 1958.
[28] 周哲寬, "CuGa和In雙靶共濺鍍前驅層後硒化法製作銅銦鎵硒太陽能電池吸收層之研究與太陽能電池的擬合和模擬程式之製作," 碩士, 材料科學工程學系, 國立清華大學, 新竹市, 2019.
[29] 蔡尚宏, "銅銦鎵硒太陽能電池模組之串聯電阻量測與分析," 碩士, 材料科學工程學系, 國立清華大學, 新竹市, 2019.
[30] L. B. J. P. o. t. I. Valdes, "Resistivity measurements on germanium for transistors," vol. 42, no. 2, pp. 420-427, 1954.
[31] M. Gostein and L. Dunn, "Light soaking effects on PV modules: Overview and literature review," in Photovoltaic Module Reliability Workshop, 2012.
[32] U. Rau, M. Schmitt, J. Parisi, W. Riedl, and F. J. A. P. L. Karg, "Persistent photoconductivity in Cu (In, Ga) Se 2 heterojunctions and thin films prepared by sequential deposition," vol. 73, no. 2, pp. 223-225, 1998.
[33] S. Kim, C.-S. Lee, S. Kim, R. Chalapathy, E. A. Al-Ammar, and B. T. J. P. C. C. P. Ahn, "Understanding the light soaking effect of ZnMgO buffer in CIGS solar cells," vol. 17, no. 29, pp. 19222-19229, 2015.
[34] Y.-S. Chiu, C.-H. Chen, T.-h. Cheng, and C.-Y. Huang, "Method and apparatus for resistivity and transmittance optimization in TCO solar cell films," ed: Google Patents, 2015.