簡易檢索 / 詳目顯示

研究生: 王之谷
Wang, Chih-Ku
論文名稱: 對綠豆植物防禦素進行蛋白質工程之特性分析
Protein Engineering on Plant Defensin from Mung Bean
指導教授: 呂平江
Lyu, Ping-Chinag
口試委員: 殷献生
張家靖
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 53
中文關鍵詞: 植物防禦素蛋白質工程二級結構胰蛋白酶
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一型綠豆防禦素(VrD1)與第二型綠豆防禦素(VrD2)被歸類成植物防禦素。植物防禦素是一種小分子胜肽,會形成四對雙硫鍵來穩定結構。主要的作用是做為植物免疫的第一道防線,三級結構與其他生物體內的防禦素非常相似,對於植物及動物細胞不會產生毒性。先前的研究將VrD1第三個loop的序列置換到VrD2的第三個loop上,創造了一個新的嵌合蛋白質VrD2c能帶有抑制昆蟲澱粉酶的功能。基於這樣的研究成果,我們希望利用蛋白質工程的技術,給予VrD2c第二項功能。
    在本次的研究,將胰蛋白抑制劑的序列轉到VrD2c的Loop 1上做為第二項功能,同時也計畫將RGD序列轉移到VrD2的loop1及loop 2上,期望藉由與integrin高度結合,成為治療血小板疾病的蛋白質藥物。我們利用圓二色光譜儀觀察到變異蛋白均展現高度的穩定性,新的嵌合蛋白同時帶有抑制胰蛋白酶及澱粉酶的功能。此外,我們計畫利用血小板聚集試驗,確認帶有RGD序列的VrD2衍生物具抑制血小板凝集的功能。就目前結果來看,VrD2是一個適合用來進行蛋白質工程的支架蛋白,我們可以將VrD2的loop置換成不同的序列,以期能開發為帶有特殊性質的新蛋白。


    Abstract 1 中文摘要 2 Abbreviations 3 Chapter 1. Introduction 4 Part I: Trypsin Inhibitor design 4 1.1 Plant Defensin 4 1.2 Vigna Radiata Plant Defensin 2 5 1.3 Trypsin Inhibitor 5 1.4 Specific aims 7 Part II: Anti-Clotting Protein Design 8 1.1 Integrin αIIbβ3 8 1.2 RGD Sequence 8 1.3 The motivation of this part 9 Chapter2. Materials and Methods 10 2.1 Construction of VrD2 mutants 10 2.2 Protein expression and purification 10 2.3 Purification and activity assay of Tenebrio molitor α-amylase 11 2.4 Tricine SDS-PAGE 12 2.5 MASS analysis 13 2.6 Quantification of protein concentration 14 2.7 Circular Dichroism (CD) Experiments 14 2.8 Trypsin inhibition Assay 15 2.9 Tenebrio molitor α-amylase Inhibition Assay 15 2.10 Molecular Modeling and Docking. 16 Chapter 3. Results and Discussion 17 Part I: Trypsin Inhibitor design 17 3.1 Protein Design, Molecular Modeling and Docking 17 3.2 Protein expressions and purification of VrD2c-1Y 17 3.3 Secondary Structure comparison of VrD2c-1Y and VrD2 18 3.4 Trypsin Inhibitory assay 19 3.5 Purification of TMA and α-Amylase Inhibitory Assay 19 Part II: Anti-Clotting Protein Design 21 3.1 Target Selection for RGD Design 21 3.2 Protein expressions and purification of D2R1 and D2R2 21 3.3 Secondary Structure of RGD proteins 21 Chapter 4. Conclusion 23 Tables and Figures 25 Figure 3.1 Strategy of trypsin inhibitor design 25 Figure 3.2 Molecular model and Ramachandran Plot analysis of VrD2c-1Y 26 Figure 3.3 Molecular docking model 27 Figure 3.4 VrD2C-1Y expression was analyzed by SDS-PAGE 28 Figure 3.5 VrD2C-1Y purification analysis by SDS-PAGE 29 Figure 3.6 HPLC profiles of VrD2c-1Y 30 Figure 3.7 Mass spectra determination of VrD2c-1Y 31 Figure 3.8 Far-UV CD spectra of VrD2c-1Y, VrD2 and VrD2c. 32 Figure 3.9 Far-UV CD spectra of VrD2c-1Y, trypsin and 1Y-trypsin complex. 33 Figure 3.10 Far-UV CD spectra of VrD2c-1Y in PBS buffer with and without TFE. 34 Figure 3.11 Inhibitory activity of VrD2c-1Y against Trypsin 35 Figure 3.12 Purification of TMA on FPLC system 36 Figure 3.13 TMA purification analysis by SDS-PAGE. 37 Figure 3.14 Inhibitory activity of VrD2c-1Y against TMA 38 Figure 3.15 Strategy of protein design containing RGD sequence 39 Figure 3.16 RGD proteins expression was analyzed by SDS-PAGE 40 Figure 3.17 RGD proteins purification analysis by SDS-PAGE. 41 Figure 3.18 HPLC profiles of RGD protein. 42 Figure 3.20 Far-UV CD spectra of D2R1, D2R2 and VrD2. 44 Figure 3.21 Far-UV CD spectra of D2R2 in PBS buffer with and without TFE. 45 Table 1. The properties of VrD protein which we used in this study 46 Table 2. Sequence of oligonucleotides used for site-directed mutagenesis. 46 Appendix 1 47 Appendix 2 48 Appendix 3 49 Reference 50

    1 Thomma, B. P., Cammue, B. P. & Thevissen, K. Plant defensins. Planta 216, 193-202, doi:10.1007/s00425-002-0902-6 (2002).
    2 Hoover, D. M. et al. The structure of human beta-defensin-2 shows evidence of higher order oligomerization. The Journal of biological chemistry 275, 32911-32918, doi:10.1074/jbc.M006098200 (2000).
    3 Sawai, M. V. et al. The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment. Biochemistry 40, 3810-3816 (2001).
    4 Bonmatin, J. M. et al. Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. Journal of biomolecular NMR 2, 235-256 (1992).
    5 Colilla, F. J., Rocher, A. & Mendez, E. gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS letters 270, 191-194 (1990).
    6 Cornet, B. et al. Refined three-dimensional solution structure of insect defensin A. Structure 3, 435-448 (1995).
    7 Jablonsky, M. J., Jackson, P. L. & Krishna, N. R. Solution structure of an insect-specific neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. Biochemistry 40, 8273-8282 (2001).
    8 Caldwell, J. E. et al. Solution structure of the thermostable sweet-tasting protein brazzein. Nature structural biology 5, 427-431 (1998).
    9 Shobukhova, T. S. et al. [Molecular genetic diagnosis of streptococcal, pertussis and parapertussis infections]. Klinicheskaia laboratornaia diagnostika, 18-20 (2000).
    10 Gao, A. G. et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature biotechnology 18, 1307-1310, doi:10.1038/82436 (2000).
    11 Osborn, R. W. et al. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS letters 368, 257-262 (1995).
    12 Liu, Y. J. et al. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 63, 777-786, doi:10.1002/prot.20962 (2006).
    13 Lin, K. F. et al. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 68, 530-540, doi:10.1002/prot.21378 (2007).
    14 Carlstedt, I. et al. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. The Journal of biological chemistry 268, 18771-18781 (1993).
    15 Ascenzi, P. et al. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Current protein & peptide science 4, 231-251 (2003).
    16 Favre, I., Moss, G. W., Goldenberg, D. P., Otlewski, J. & Moczydlowski, E. Structure-activity relationships for the interaction of bovine pancreatic trypsin inhibitor with an intracellular site on a large conductance Ca(2+)-activated K(+) channel. Biochemistry 39, 2001-2012 (2000).
    17 Huber, R., Kukla, D., Ruhlmann, A., Epp, O. & Formanek, H. The basic trypsin inhibitor of bovine pancreas. I. Structure analysis and conformation of the polypeptide chain. Die Naturwissenschaften 57, 389-392 (1970).
    18 Creighton, T. E. & Charles, I. G. Sequences of the genes and polypeptide precursors for two bovine protease inhibitors. Journal of molecular biology 194, 11-22 (1987).
    19 Schechter, I. & Berger, A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochemical and biophysical research communications 32, 898-902 (1968).
    20 Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochemical and biophysical research communications 27, 157-162 (1967).
    21 Abramowitz, N., Schechter, I. & Berger, A. On the size of the active site in proteases. II. Carboxypeptidase-A. Biochemical and biophysical research communications 29, 862-867 (1967).
    22 Castro, M. J. & Anderson, S. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin. Biochemistry 35, 11435-11446, doi:10.1021/bi960515w (1996).
    23 Schlott, B. et al. Interaction of Kazal-type inhibitor domains with serine proteinases: biochemical and structural studies. Journal of molecular biology 318, 533-546, doi:10.1016/S0022-2836(02)00014-1 (2002).
    24 Kazal, L. A., Spicer, D. S. & Brahinsky, R. A. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. Journal of the American Chemical Society 70, 3034-3040 (1948).
    25 Rimphanitchayakit, V. & Tassanakajon, A. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Developmental and comparative immunology 34, 377-386, doi:10.1016/j.dci.2009.12.004 (2010).
    26 Pesheva, P., Horwitz, A. F. & Schachner, M. Integrin, the cell surface receptor for fibronectin and laminin, expresses the L2/HNK-1 and L3 carbohydrate structures shared by adhesion molecules. Neuroscience letters 83, 303-306 (1987).
    27 Parise, L. V. Integrin alpha(IIb)beta(3) signaling in platelet adhesion and aggregation. Current opinion in cell biology 11, 597-601 (1999).
    28 Ma, Y. Q., Qin, J. & Plow, E. F. Platelet integrin alpha(IIb)beta(3): activation mechanisms. Journal of thrombosis and haemostasis : JTH 5, 1345-1352, doi:10.1111/j.1538-7836.2007.02537.x (2007).
    29 Ruoslahti, E. RGD and other recognition sequences for integrins. Annual review of cell and developmental biology 12, 697-715, doi:10.1146/annurev.cellbio.12.1.697 (1996).
    30 Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33 (1984).
    31 Schaffner, P. & Dard, M. M. Structure and function of RGD peptides involved in bone biology. Cellular and molecular life sciences : CMLS 60, 119-132 (2003).
    32 Shiu, J. H. et al. Solution structure of gamma-bungarotoxin: the functional significance of amino acid residues flanking the RGD motif in integrin binding. Proteins 57, 839-849, doi:10.1002/prot.20269 (2004).
    33 Coller, B. S. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. The Journal of clinical investigation 99, 1467-1471, doi:10.1172/JCI119307 (1997).
    34 Michelson, A. D. Antiplatelet therapies for the treatment of cardiovascular disease. Nature reviews. Drug discovery 9, 154-169, doi:10.1038/nrd2957 (2010).
    35 Oliyai, C. & Borchardt, R. T. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharmaceutical research 10, 95-102 (1993).
    36 Strobl, S. et al. The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS letters 409, 109-114 (1997).
    37 Schagger, H. Tricine-SDS-PAGE. Nature protocols 1, 16-22, doi:10.1038/nprot.2006.4 (2006).
    38 Begg, G. E. & Speicher, D. W. Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines. Journal of biomolecular techniques : JBT 10, 17-20 (1999).
    39 Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry 150, 76-85 (1985).
    40 Winnica, D. E., Novella, M. L., Dematteis, A. & Coronel, C. E. Trypsin/acrosin inhibitor activity of rat and guinea pig caltrin proteins. Structural and functional studies. Biology of reproduction 63, 42-48 (2000).
    41 Buonocore, V., Poerio, E., Silano, V. & Tomasi, M. Physical and catalytic properties of alpha-amylase from Tenebrio molitor L. larvae. The Biochemical journal 153, 621-625 (1976).
    42 Kazzazi, M., Bandani, A. R., Ashuri, A. & Hosseinkhani, S. A amylase activity of nymphal stages of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Communications in agricultural and applied biological sciences 70, 863-867 (2005).
    43 Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic acids research 33, W363-367, doi:10.1093/nar/gki481 (2005).
    44 Anderluh, G., Gokce, I. & Lakey, J. H. A natively unfolded toxin domain uses its receptor as a folding template. The Journal of biological chemistry 279, 22002-22009, doi:10.1074/jbc.M313603200 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE