研究生: |
王之谷 Wang, Chih-Ku |
---|---|
論文名稱: |
對綠豆植物防禦素進行蛋白質工程之特性分析 Protein Engineering on Plant Defensin from Mung Bean |
指導教授: |
呂平江
Lyu, Ping-Chinag |
口試委員: |
殷献生
張家靖 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 植物防禦素 、蛋白質工程 、二級結構 、胰蛋白酶 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一型綠豆防禦素(VrD1)與第二型綠豆防禦素(VrD2)被歸類成植物防禦素。植物防禦素是一種小分子胜肽,會形成四對雙硫鍵來穩定結構。主要的作用是做為植物免疫的第一道防線,三級結構與其他生物體內的防禦素非常相似,對於植物及動物細胞不會產生毒性。先前的研究將VrD1第三個loop的序列置換到VrD2的第三個loop上,創造了一個新的嵌合蛋白質VrD2c能帶有抑制昆蟲澱粉酶的功能。基於這樣的研究成果,我們希望利用蛋白質工程的技術,給予VrD2c第二項功能。
在本次的研究,將胰蛋白抑制劑的序列轉到VrD2c的Loop 1上做為第二項功能,同時也計畫將RGD序列轉移到VrD2的loop1及loop 2上,期望藉由與integrin高度結合,成為治療血小板疾病的蛋白質藥物。我們利用圓二色光譜儀觀察到變異蛋白均展現高度的穩定性,新的嵌合蛋白同時帶有抑制胰蛋白酶及澱粉酶的功能。此外,我們計畫利用血小板聚集試驗,確認帶有RGD序列的VrD2衍生物具抑制血小板凝集的功能。就目前結果來看,VrD2是一個適合用來進行蛋白質工程的支架蛋白,我們可以將VrD2的loop置換成不同的序列,以期能開發為帶有特殊性質的新蛋白。
1 Thomma, B. P., Cammue, B. P. & Thevissen, K. Plant defensins. Planta 216, 193-202, doi:10.1007/s00425-002-0902-6 (2002).
2 Hoover, D. M. et al. The structure of human beta-defensin-2 shows evidence of higher order oligomerization. The Journal of biological chemistry 275, 32911-32918, doi:10.1074/jbc.M006098200 (2000).
3 Sawai, M. V. et al. The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment. Biochemistry 40, 3810-3816 (2001).
4 Bonmatin, J. M. et al. Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. Journal of biomolecular NMR 2, 235-256 (1992).
5 Colilla, F. J., Rocher, A. & Mendez, E. gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS letters 270, 191-194 (1990).
6 Cornet, B. et al. Refined three-dimensional solution structure of insect defensin A. Structure 3, 435-448 (1995).
7 Jablonsky, M. J., Jackson, P. L. & Krishna, N. R. Solution structure of an insect-specific neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. Biochemistry 40, 8273-8282 (2001).
8 Caldwell, J. E. et al. Solution structure of the thermostable sweet-tasting protein brazzein. Nature structural biology 5, 427-431 (1998).
9 Shobukhova, T. S. et al. [Molecular genetic diagnosis of streptococcal, pertussis and parapertussis infections]. Klinicheskaia laboratornaia diagnostika, 18-20 (2000).
10 Gao, A. G. et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature biotechnology 18, 1307-1310, doi:10.1038/82436 (2000).
11 Osborn, R. W. et al. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS letters 368, 257-262 (1995).
12 Liu, Y. J. et al. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 63, 777-786, doi:10.1002/prot.20962 (2006).
13 Lin, K. F. et al. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 68, 530-540, doi:10.1002/prot.21378 (2007).
14 Carlstedt, I. et al. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. The Journal of biological chemistry 268, 18771-18781 (1993).
15 Ascenzi, P. et al. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Current protein & peptide science 4, 231-251 (2003).
16 Favre, I., Moss, G. W., Goldenberg, D. P., Otlewski, J. & Moczydlowski, E. Structure-activity relationships for the interaction of bovine pancreatic trypsin inhibitor with an intracellular site on a large conductance Ca(2+)-activated K(+) channel. Biochemistry 39, 2001-2012 (2000).
17 Huber, R., Kukla, D., Ruhlmann, A., Epp, O. & Formanek, H. The basic trypsin inhibitor of bovine pancreas. I. Structure analysis and conformation of the polypeptide chain. Die Naturwissenschaften 57, 389-392 (1970).
18 Creighton, T. E. & Charles, I. G. Sequences of the genes and polypeptide precursors for two bovine protease inhibitors. Journal of molecular biology 194, 11-22 (1987).
19 Schechter, I. & Berger, A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochemical and biophysical research communications 32, 898-902 (1968).
20 Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochemical and biophysical research communications 27, 157-162 (1967).
21 Abramowitz, N., Schechter, I. & Berger, A. On the size of the active site in proteases. II. Carboxypeptidase-A. Biochemical and biophysical research communications 29, 862-867 (1967).
22 Castro, M. J. & Anderson, S. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin. Biochemistry 35, 11435-11446, doi:10.1021/bi960515w (1996).
23 Schlott, B. et al. Interaction of Kazal-type inhibitor domains with serine proteinases: biochemical and structural studies. Journal of molecular biology 318, 533-546, doi:10.1016/S0022-2836(02)00014-1 (2002).
24 Kazal, L. A., Spicer, D. S. & Brahinsky, R. A. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. Journal of the American Chemical Society 70, 3034-3040 (1948).
25 Rimphanitchayakit, V. & Tassanakajon, A. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Developmental and comparative immunology 34, 377-386, doi:10.1016/j.dci.2009.12.004 (2010).
26 Pesheva, P., Horwitz, A. F. & Schachner, M. Integrin, the cell surface receptor for fibronectin and laminin, expresses the L2/HNK-1 and L3 carbohydrate structures shared by adhesion molecules. Neuroscience letters 83, 303-306 (1987).
27 Parise, L. V. Integrin alpha(IIb)beta(3) signaling in platelet adhesion and aggregation. Current opinion in cell biology 11, 597-601 (1999).
28 Ma, Y. Q., Qin, J. & Plow, E. F. Platelet integrin alpha(IIb)beta(3): activation mechanisms. Journal of thrombosis and haemostasis : JTH 5, 1345-1352, doi:10.1111/j.1538-7836.2007.02537.x (2007).
29 Ruoslahti, E. RGD and other recognition sequences for integrins. Annual review of cell and developmental biology 12, 697-715, doi:10.1146/annurev.cellbio.12.1.697 (1996).
30 Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33 (1984).
31 Schaffner, P. & Dard, M. M. Structure and function of RGD peptides involved in bone biology. Cellular and molecular life sciences : CMLS 60, 119-132 (2003).
32 Shiu, J. H. et al. Solution structure of gamma-bungarotoxin: the functional significance of amino acid residues flanking the RGD motif in integrin binding. Proteins 57, 839-849, doi:10.1002/prot.20269 (2004).
33 Coller, B. S. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. The Journal of clinical investigation 99, 1467-1471, doi:10.1172/JCI119307 (1997).
34 Michelson, A. D. Antiplatelet therapies for the treatment of cardiovascular disease. Nature reviews. Drug discovery 9, 154-169, doi:10.1038/nrd2957 (2010).
35 Oliyai, C. & Borchardt, R. T. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharmaceutical research 10, 95-102 (1993).
36 Strobl, S. et al. The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS letters 409, 109-114 (1997).
37 Schagger, H. Tricine-SDS-PAGE. Nature protocols 1, 16-22, doi:10.1038/nprot.2006.4 (2006).
38 Begg, G. E. & Speicher, D. W. Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines. Journal of biomolecular techniques : JBT 10, 17-20 (1999).
39 Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry 150, 76-85 (1985).
40 Winnica, D. E., Novella, M. L., Dematteis, A. & Coronel, C. E. Trypsin/acrosin inhibitor activity of rat and guinea pig caltrin proteins. Structural and functional studies. Biology of reproduction 63, 42-48 (2000).
41 Buonocore, V., Poerio, E., Silano, V. & Tomasi, M. Physical and catalytic properties of alpha-amylase from Tenebrio molitor L. larvae. The Biochemical journal 153, 621-625 (1976).
42 Kazzazi, M., Bandani, A. R., Ashuri, A. & Hosseinkhani, S. A amylase activity of nymphal stages of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Communications in agricultural and applied biological sciences 70, 863-867 (2005).
43 Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic acids research 33, W363-367, doi:10.1093/nar/gki481 (2005).
44 Anderluh, G., Gokce, I. & Lakey, J. H. A natively unfolded toxin domain uses its receptor as a folding template. The Journal of biological chemistry 279, 22002-22009, doi:10.1074/jbc.M313603200 (2004).