簡易檢索 / 詳目顯示

研究生: 王正寧
Wang, Jeng-Ning
論文名稱: 輻射防護劑量計算之研究:劑量轉換因數、診斷和治療有效劑量評估
Computational Study of Radiological Protection Dose: Dose Conversion Factor, Diagnostic and Therapeutic Effective Dose Evaluation
指導教授: 江祥輝
口試委員: 江祥輝
薛燕婉
林威廷
許榮鈞
張栢菁
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 189
中文關鍵詞: 輻射防護量擬人假體硼中子捕獲治療
外文關鍵詞: Radiation protection quantity, Phantom, BNCT
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輻射防護劑量為評估輻射曝露風險的重要參考基準。國際放射防護委員會所定義之輻射防護量,一直是世界各國訂定相關游離輻射防護法律、規範、指引的依據。經過多年的發展,國際放射防護委員會已針對輻射曝露風險建立一套完整的評估系統。由於不論是器官劑量、或是全身劑量的評估,輻射防護量均定義在人體上,無法以實驗測量方式獲得。因此必須以程式配合數值假體進行模擬計算,方能求得輻射防護量。
    本研究利用數學假體及體素假體兩種性質不同的數值假體,藉由蒙地卡羅計算機程式針對國際放射防護委員會所定義的輻射防護量進行研究。對於體外照射對不同年齡層假體造成之劑量轉換因數的影響、放射診斷最常使用的X光照相檢驗之曝露風險評估、以及硼中子捕獲治療造成的輻射防護量,均做詳細的模擬計算及討論。經研究發現,劑量轉換因數與年齡有一定依存關係,現今僅使用成年人劑量轉換因數進行屏蔽計算,對某些場合或應用可能會有低估的疑慮。輻射防護量在X光放射診斷的應用亦於本研究中探討。計算後發現,不同的X光管電壓與不同的照射方式對輻射防護量有明顯的影響,不論是胸部或腹部X光照相檢驗,有效劑量均與峰值管電壓成正比。另外,依據不同射源項特性、不同照射幾何、不同數值假體、不同防護量建議,硼中子捕獲治療造成之等價劑量與有效劑量亦經過詳細的分析與討論,計算結果發現照射幾何對有效劑量評估結果有明顯的影響,尤其是採用ICRP 103號報告之建議時。本研究之成果,期能提供國內硼中子捕獲治療研究與發展之參考。


    Protection quantities are important tools for the assessment of stochestic effects induced by radiations. Nowadays the concepts brought up by ICRP are well developed and are widely adopted in the laws, regulations and guidences. Since the protection quantities are defined in a human body, it is very difficult to measure those quantities directly. Therefore the only way to acquire the equivalent dose and the effective dose is through simulations.
    In this study, the equivalent dose and the effective dose were evaluated by a Monte Carlo code, MCNP, and by the numerical phantoms. Both a methematical phantom developed by Eckerman and a voxel phantom of ICRP Publication 110 were used in the calculation. Age-dependent protection quantities for external irradiations, the equivalent dose and effective dose results from the X-ray diagnosis and from the boron neutron capture therapy were evaluated and discussed in detail. The dependence between the age and the protection quantities shows that using only the dose conversion factors for adults may result in underestimations. For the X –ray radiological diagnosis, the peak tube voltage of the X-ray tube and the irradiation geometry severely affect the protection quanties evaluated. Especially for the radiological therapy, the treatment planning not only needs to focus on the dose in the tumor, but also take the exposure risk of the normal tissue into account. The parameters of the boron neutron capture therapy, such as source terms, irradiation geometries, phantoms, recommendations on radiation quantities, were all considered in the calculations. Their impact were also discussed.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究目的 1 1.2 體外輻射防護劑量之演進 1 1.3 防護劑量與操作劑量 3 第二章 擬人假體 7 2.1 數學假體 7 2.2 體素假體 10 第三章 計算程式工具介紹 22 第四章 劑量轉換因數計算 26 4.1 劑量評估模式 26 4.1.1射源項設定 26 4.1.2劑量計算方式的變更 27 4.2 等價劑量與有效劑量轉換因數 29 4.2.1 體外光子照射計算結果 29 4.2.1.1 有效劑量轉換因數的比較 29 4.2.1.2 不同照射幾何之劑量轉換因數 30 4.2.1.3 不同年齡層之劑量轉換因數 31 4.2.2 體外中子照射計算結果 32 4.2.2.1 有效劑量轉換因數的比較 32 4.2.2.2不同照射幾何之劑量轉換因數 33 4.2.2.3 不同年齡層之劑量轉換因數 33 第五章 X光照相檢驗有效劑量評估 75 5.1 劑量評估模式 75 5.1.1 射源項設定 75 5.1.2 計算模式 76 5.2 劑量評估結果 76 5.2.1 胸部X光照相檢驗計算結果 76 5.2.2 腹部X光照相檢驗計算結果 77 第六章 硼中子捕獲治療有效劑量評估 88 6.1 硼中子捕獲治療介紹 88 6.2 清華水池式反應器硼中子捕獲治療射束射源特性 89 6.3 劑量評估模式 91 6.3.1 數學假體計算模式 91 6.3.2 體素假體計算模式 92 6.4 劑量評估結果 93 6.4.1 數學假體計算結果 93 6.4.2 體素假體計算結果 95 6.4.3 腦瘤硼中子捕獲治療有效劑量計算 96 第七章 結論與建議 125 7.1 結論 125 7.2 建議 126 參考文獻 128 附錄A MCNP程式之ROT與ISO照射幾何取樣方式 134 A.1 ROT照射幾何(成年人、光子射源) 134 A.2 ISO照射幾何(成年人、光子射源) 134 附錄B 清華水池式反應器硼中子捕獲治療射束射源項取樣 135 B.1熱中子射源項 135 B.2超熱中子射源項 142 B.3快中子射源項 153 B.4光子射源項 160 附錄C 硼中子捕獲治療吸收劑量計算結果 162 附錄D 硼中子捕獲治療中子及其二次光子對吸收劑量貢獻 176

    1. 行政院原子能委員會, “游離輻射防護法,”中華民國91年1月30日華總一義字第09100019000號總統令制定公佈全文57條, 中華民國91年12月23日行政院院臺科字第0910064739號令發佈, 自92年2月1日施行.
    2. 行政院原子能委員會, “游離輻射防護法施行細則,” 中華民國91年12月25日行政院原子能委員會會輻字第0910025075號令訂定發布全文25條, 中華民國97年2月22日行政院原子能委員會會輻字第 0970002871 號令修正發布, 自發布日施行.
    3. ICRP, “Recommendations of the International Commission on Radiological Protection,” ICRP Publication 9, Pergamon Press, Oxford (1966).
    4. ICRP, “Recommendations of the International Commission on Radiological Protection,” ICRP Publication 26, Annals of the ICRP 1(3), Pergamon Press, Oxford (1977).
    5. ICRP, “1990 Recommendations of the International Commission on Radiological Protection,” ICRP Publication 60, Annals of the ICRP 21(1-3), Pergamon Press, Oxford (1990).
    6. ICRP, “2007 Recommendation of the International Commission on Radiological Protection,” ICRP Publication 103, Annals of the ICRP 37(2-4), Elsevier, Oxford (2007).
    7. ICRU, “Determination of Dose Equivalents Resulting from External Radiation Sources,” ICRU Report 39, Bethesda, Maryland (1985).
    8. ICRU, “Determination of Dose Equivalents Resulting from External Radiation Sources – Part 2,” ICRU Report 43, Bethesda, Maryland (1988).
    9. ICRU, “Measurement of Dose Equivalents from Exteranl Photon and Election Radiations,” ICRU Report 47, Bethesda, Maryland (1992).
    10. L. H. Lanzl, “The RANDO Phantom and Its Medical Applications,” Department of Radiology, The University of Chicago, Chicago, Illinois (1995).
    11. 黃英明, 李必忍, 賴耿光, 嚴溫榕, “以Plexiglass假體校正Ir-192近接治療射源活度,” 放射治療與腫瘤學, 5, 201-206 (1998).
    12. 莊克士, “建立醫院近接治療射源之校正技術及品保作業程序,” 行政院原子能委員會委託研究計畫論文報告, 民國93年4月.
    13. 王正寧, 許任玓, 張栢菁, “RANDO假體臨床放射治療劑量評估與驗證,” 核能研究所報告, INER-2639, 民國92年12月.
    14. American Nuclear Society, “American National Standard for Neutron and Gamma-Ray Fluence-to-Dose Factors,” American Nuclear Society, ANSI/ANS-6.1.1-1991, (1991).
    15. ICRP, “Conversion Coefficients for Use in Radiological Protection against External Radiation,” ICRP Publication 74, Annals of the ICRP 26(3/4), Elsevier Science, Oxford (1996).
    16. ICRP, “Reference Man : Anatomical, Physiological and Metabolic Characteristics,” ICRP Publication 23, Pergamon Press, Oxford (1975).
    17. W. S. Snyder, M. R. Ford, G. G. Warner and H.L. Fisher, Jr., “Estimates of Specific Absorbed Fractions for Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom,” Medical Internal Radiation Dose Committee Pamphlet No. 5 (J. Nucl. Med., 10 (1969), Supplement No. 3).
    18. K. F. Eckerman, M. Cristy and J.C. Ryman, “The ORNL Mathematical Phantom Series,” (1996), http://ats.ornl.gov/documants/mird2.pdf.
    19. 山口恭弘,”JEUNESSE:年齡依存型人体模型を用い光子外部被曝線量計算コ—ド,” 日本保健物理, 27, 305-312 (1992).
    20. R. Kramer, M. Zankl, G. Williams and G. Drexler, “The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods, Part I : The Male (ADAM) and Female (EVA) Adult Mathematical Phantoms,” GSF-Bericht S-885 (1982).
    21. M. Zankl, R. Veit, G. Williams, K. Schneider, H. Fendel, N. Petoussi and G. Drexler, “The Construction of Computer Tomographic Phantoms and Their Application in Radiology and Radiation Protection,” Radiat. Environ. Biophys., 27, 153-164 (1988).
    22. I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi and P. B. Hoffer, “Computerized Three-dimensional Segmented Human Anatomy,” Med. Phys., 21, 299-302 (1994).
    23. M. Zankl, N. Petoussi-Henss and A. Wittmann, “The GSF Voxel Phantoms and Their Application in Radiology and Radiation Protection.” Proc. of an International Workshop at NRPB “Voxel Phantom Development,” Chilton, UK, July 6 and 7, 98-104 (1995).
    24. N. Petoussi-Henss, M. Zankl, U. Fill and D. Regulla, “The GSF family of voxel phantoms,” Phys. Med. Biol., 47, 89-106 (2002).
    25. K. Saito, A. Wittmann, S. Koga, Y. Ida, K. Kamei and M. Zankl, “The Construction of a Computed Tomographic for a Japanese Male Adult and Dose Calculation System,” Radiat. Environ. Biophys., 40, 69–76 (2001).
    26. P. J. Dimbylow, “The Development of Realistic Voxel Phantoms for Electromagnetic Field Dosimetry,” Proc. of an International Workshop at NRPB “Voxel Phantom Development,” Chilton, UK, July 6 and 7, 1-7 (1995).
    27. ICRP, “Adult Reference Computional Phantoms Joint ICRP/ICRU Report,” ICRP Publication 110, Annals of the ICRP 39(2), Elsevier, Oxford (2009).
    28. ICRP, “Basic Anatomical and Physiological Data for Use in Radiological Protection: The Skeleton,” ICRP Publication 70, Annals of ICRP 25(2), Elsevier, Oxford (1995).
    29. ICRP, “Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values,” ICRP Publication 89, Annals of ICRP 32(3-4), Elsevier, Oxford (2002).
    30. RSIC, “QAD-CGGP: A Combinatorial Geometry Version of QAD-P5A, A Point Kernel Code System for Neutron and Gamma-Ray Shielding Calculations Using the GP Building Factor,” RSIC CCC-493, Oak Ridge National Laboratory, Radiation Shielding Information Center (1989).
    31. W. A. Rhoades and R. L. Childs, “The DORT Two-Dimensional Discrete Ordinates Transport Code,” Nucl. Sci. & Eng., 99(1), 88-89 (1988).
    32. W. R. Nelson, H. Hirayama and D.W.O. Rogers, “The EGS4 Code System,” Stanford Linear Accelerator Center Report SLAC-265, Stanford California (1985).
    33. X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Volume I: Overview and Theory” LA-UR-03-1987, Los Alamos National Laboratory (2003).
    34. X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Volume II: User’s Guide” LA-CP-03-0245, Los Alamos National Laboratory (2003).
    35. X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Volume III: Developer’s Guide” LA-CP-03-0284, Los Alamos National Laboratory (2003).
    36. A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, “FLUKA: A Multi-Particle Transport Code,” SLAC-R-773, Stanford Linear Accelerator Center, Stanford, California (2005).
    37. S. Agostinelliae, J. Allisonas, K. Amakoe, and et al., “Geant4 - a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, 506 250-303 (2003).
    38. M. Zankl, N. Petoussi and G. Drexler, “Effective Dose and Effective Dose Equivalent – The Impact of the new ICRP Definition for External Photon Irradiation,” Health Phys. 62(6), 395-399 (1992).
    39. R. A. Hollnaget, “Calculated Effective Doses in Anthrooid Phantoms for Broad Neutron Beams with Energies from Thermal to 19 MeV,” Radiat. Prot. Dosim. 44(1/4), 155-158 (1992).
    40. R. A. Hollnaget, “Conversion Functions of Effective Dose E and Effective Dose Equivalent HE for Neutrons with Energies from Thermal to 20 MeV,” Radiat. Prot. Dosim. 54(3/4), 209-212 (1994).
    41. K. Morstin, M. Kopect and Th. Schmitz, “Equivalent Dose Versus Dose Equivalent for Neutrons Based on New ICRP Recommendations,” Radiat. Prot. Dosim. 44(1/4) 159-164 (1992).
    42. B. K. Nabelssi and N. E. Hertel, “Ambient Dose Equivalents, Effective Dose Equivalents, and Effective Doses for Neutrons form 10 to 20 MeV,” Radiat. Prot. Dosim. 48(2), 153-168 (1993).
    43. B. K. Nabelssi and N. E. Hertel, “Effective Dose Equivalents and Effective Doses for Neutrons form 30 to 180 MeV,” Radiat. Prot. Dosim. 48(3), 227-243 (1993).
    44. N. Petoussi, P. Jacob, M. Zankl and K. Saito, “Organ Doses for Foetuses, Babies, Children and Adults from Environmental Gamma Rays,” Radiat. Prot. Dosim. 37(1), 31-41 (1991).
    45. Y. Yamaguchi, “Age-dependent Effective Doses for External Photons,” Radiat. Prot. Dosim. 55(2), 123-129 (1994).
    46. Y. Yamaguchi, “Age-dependent Effective Doses for Neutron from Thermal to 18.3 MeV,” Radiat. Prot. Dosim. 55(4), 257-263 (1994).
    47. M. B. Emmett, “The MORSE Monte Carlo Radiation Transport Code System,” ORNL-4972/R2, Oak Ridge National Laboratory, Tennessee (1975).
    48. 李世中, “數位式胸腔X光照相之劑量-影像品質最佳化評估,” 國立清華大學工程與系統科學系博士學位論文, 民國96年6月。
    49. AIC Software Inc., ”PHOTKOEF,” P.O. Box 544, Grafton, MA 01519-USA, http://www.photcoef.com.
    50. S. C. Lee, J. N. Wang, S. C. Liu, and S. H. Jiang, ”Effective Dose Evaluation for Chest and Abdomen X-ray Tests,” Radiat. Prot. Dosim, 116(1-4), 613-619 (2005).
    51. G. L. Locher, ”Biological Effects and Therapeutic Possibilities of Neutrons,” Am. J. Roentgenol. Radium Ther., 36, 1-13 (1936).
    52. 陳一瑋, ”硼中子捕獲腫瘤治療概念與研究發展現況介紹,” 台北榮總學訊第165期, 台北榮民總醫院醫學教育委員會, 21-28 (2011).
    53. F. Y. Hsua, C. J. Tung, J. C. Chen, Y. L. Wang, H. C. Huang and R. G. Zamenhof, “Dose-rate Scaling factor Estimation of THOR BNCT Test Beam,” Appl. Radiat. Isot., 61, 881-885 (2004).
    54. A.Y. Chen, Y. W. H. Liu and R. J. Sheu, “Radiation Shielding Evaluation of the BNCT Treatment Room at THOR: A TORT-coupled MCNP Monte Carlo Simulation Study,” Appl. Radiat. Isot., 66, 28-38 (2008).
    55. F. Y. Hsua, M. C. Chiu, Y. L. Chang, C. C. Yu and H. M. Liu, “Estimation of Photon and Neutron Dose Distributions in the THOR BNCT Treatment Room Using Dual TLD Method,” Radiat. Meas., 43, 1089-1094 (2008).
    56. F. I. Chou, H. P. Chung, H. M. Liu, C. W. Chi and W. Y. Lui, “Suitability of Boron Carriers for BNCT: Accumulation of Boron in Malignant and Normal Liver Cells After Treatment with BPA, BSH and BA,” Appl. Radiat. Isot., 67(7-8), S105-S108 (2009).
    57. H. S. Li, Y. W. H. Liu, C. Y. Lee, T. Y. Lin and F. Y. Hsu, “Verification of the Accuracy of BNCT Treatment Planning System THORplan,” Appl. Radiat. Isot., 67(7-8), S122-S125 (2009).
    58. F. Y. Hsu, M. T. Liu, C. J. Tung, Y. W. Hsueh Liu, C. C. Chang, H. M. Liu and F. I. Chou, “Assessment of Dose Rate Scaling Factors Used in NCTPlan Treatment Planning Code for the BNCT Beam of THOR,” Appl. Radiat. Isot., 67(7-8), S130-S133 (2009).
    59. Y. H. Liu, S. Nievaart, P. E. Tsai, H. M. Liu, R. Moss and S. H. Jiang, “Neutron Spectra Measurement and Comparison of the HFR and THOR BNCT Beams,” Appl. Radiat. Isot., 67(7-8), S137-S140 (2009).
    60. F. Y. Hsu, H. W. Hsiao, C. J. Tung, H. M. Liu and F. I. Chou, “Microdosimetry Study of THOR BNCT Beam Using Tissue Equivalent Proportional Counter,” Appl. Radiat. Isot., 67(7-8), S175-S178 (2009).
    61. P. E. Tsai, Y. H. Liu, C. K. Huang, H. M. Liu and S. H. Jiang, “Neutron Flux Mapping Inside a Cubic and a Head PMMA Phantom Using Indirect Neutron Radiography,” Appl. Radiat. Isot., 67(7-8), S190-S194 (2009).
    62. H.M. Liu, J. J. Peir, Y. H. Liu, P. E. Tsai and S. H. Jiang, “Increase of the Beam Intensity for BNCT by Changing the Core Configuration at THOR” Appl. Radiat. Isot., 67(7-8), S247-S250 (2009).
    63. J. N. Wang, C. K. Huang, W. C. Tsai, Y. H. Liu and S. H. Jiang, “Effective Dose Evaluation for BNCT Treatment in the Epithermal Neutron Beam at THOR,” Appl. Radiat. Isot., 69, 1850-1853 (2011).
    64. Y. H. Liu, P. E. Tsai, H. T. Yu, Y. C. Lin, Y. S. Huang, C. K. Huang, Y. W. Hsueh Liu, H. M. Liu and S. H. Jiang, “Performance Evaluation of the Source Description of the THOR BNCT Epithermal Neutron Beam,” Appl. Radiat. Isot., 69, 1892-1896 (2011).
    65. 江祥輝, “國立清華大學水池式反應爐改建為硼中子捕獲治療(BNCT)專用核反應爐研究計畫成果報告,” NSC91-2745-P-007-001, 國科會, 民國91年12月。
    66. Y. W. H. Liu, T. T. Huang, S. H. Jiang and H. M. Liu, “Renovation of Epithermal Neutron Beam for BNCT at THOR,” Appl. Radiat. Isot., 61, 1039-1043 (2004).
    67. 黃俊愷, “利用間接中子造影方法量測清華水池式反應器硼中子捕獲治療射束之中子二維分佈,” 國立清華大學工程與系統科學系碩士學位論文, 民國97年。
    68. 蔡碧恩, “利用間接中子造影法進行硼中子捕獲治療中子射束之特性研究,” 國立清華大學工程與系統科學系碩士學位論文, 民國98年。
    69. 劉淵豪, ”硼中子捕獲治療超熱中子束之中子特性研究,” 國立清華大學工程與系統科學系博士學位論文, 民國98年3月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE