研究生: |
黃俊豪 Huang, Chun-Hao |
---|---|
論文名稱: |
新電子關聯122層狀過渡金屬(銥、鈀、鉑) 鍺鈣化合物系統的超導性質 Superconductivity in the new electron-correlated 122-layer system CaT2Ge2 (T = Ir, Pd, Pt) |
指導教授: |
古煥球
Ku, Huan-Chiu |
口試委員: |
徐永源
戴明鳳 游元鵬 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 超導性 、122系統 、鍺 |
外文關鍵詞: | superconductivity, 122-system, germanide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在具有鋇鐵砷型四角體心立方結構(空間群I4/mmm)的新122層狀化合物銥鍺化鈣及鈀鍺化鈣,具有超導特性及超導相轉變溫度分別是5.4 K及2.5K。在準三元化合物系統銥鉑鍺化鈣(Ca(Ir1-xPtx)2Ge2)中,由於單斜(monoclinic)結構產生(空間群為P21),導致超導相轉變溫度隨著鉑的比例而遞減。從5.4K (x=0),4 K (x=0.1),3.2 K (x=0.2)到2.2 K (x=0.5)以及在鉑的比例大於0.6時,沒有發現超導特性。另外在具有單斜結構的鉑鍺化銥在2K以上沒有發現有超導特性。銥鍺化鈣會在出現超導特性是因為沿著C軸的正四面體IrGe4所產生的晶格場和準二維的層狀Ir-Ge-Ir雜交以及Ir-5d7自旋軌道交互作用。在準正交11層狀系統銥鉑鍺((Ir1-xPtx)Ge) (空間群為Pnma)超導相轉變溫度隨著鉑增加而遞減從4.8 (x=0),3.6(x=0.1)到2.3(x=0.2)以及比例大於0.3時沒有發現超導特性。另外Matthias發現鉑鍺化合物的超導溫度為0.4 K。
Superconductivity were observed in the new 122-layer compounds CaIr2Ge2 (Tc = 5.4 K) and CaPd2Ge2 (Tc = 2.5 K) with the BaFe2As2-type body-centered-tetragonal structure (bct, space group I4/mmm). For the pseudoternary Ca(Ir1-xPtx)2Ge2 system, superconducting transition Tc decreases from 5.4 K for CaIr2Ge2 (x = 0), to 3.8 K for x = 0.1, 3.0 K for x = 0.2, 2.2 K for x = 0.5, and below 2 K for x ﹥0.5. In addition to bct phase, x-ray powder differation pattern show the appearance of non-superconducting monoclinic 122-phase (space group P21, a < b, β > 90o). No Tc above 2 K was observed for the monoclinic compound CaPt2Ge2. Higher Tc in the bct CaIr2Ge2 is due to a strong quasi-2D Ir-Ge-Ir 5dxz,yz-4p-5dxz,yz hybridization in the Ir-Ge layer with the squeezed-along-c-axis IrGe4 tetragonal crystal field and the Ir-5d7 spin-orbital interaction. For the orthorhombic (11) layer system (Ir1-xPtx)Ge (space group Pnma), Tc decreases from 4.8 K for IrGe (x = 0), to 3.6 K for x = 0.1, 2.3 K for x = 0.2 and below 2 K for x ≧ 0.3, with low Tc of 0.4 K reported for PtGe.
[1] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and
Hideo Hosono. J. Am. Chem. Soc. 130, 3296 (2008).
[2] Marianne Rotter, Marcus Tegel, and Dirk Johrendt. Phys.
Rev. Lett. 101. 107006 (2008).
[3] Athena S. Sefat, Rongying Jin, Michael A. McGuire, Brian
C. Sales, David J. Singh, and David Mandrus. Phys. Rev.
Lett. 101. 117004 (2008).
[4] K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y.
Xue, and C.W.Chu. Phys. Rev. Lett. 101, 107007 (2008).
[5] A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J.
Singh, and D. Mandrus. Phys. Rev. Lett. 101, 117004
(2008).
[6] D. J. Singh. Phys. Rev. B. 78, 094511 (2008).
[7] E. Akt€urk and S. Ciraci. Phys. Rev. B. 79, 184523
(2009).
[8] N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun,
S. L. Bud’ko, and P. C. Canfield. Phys. Rev. B. 78,
014523 (2008).
[9] H. Hosono, Physica C. 469, 314 (2009).
[10] A. I. Goldman, D. N. Argyriou, B. Ouladdiaf, T.
Chatterji, A. Kreyssig, S. Nandi, N. Ni, S. L.
Bud’ko, P. C. Canfield, and R. J. McQueeney. Phys.
Rev. B. 78, 100506 (2008).
[11] S.-H. Baek, N. J. Curro, T. Klimczuk, E. D. Bauer, F.
Ronning, and J. D.Thompson. Phys. Rev. B. 79, 052504
(2009).
[12] J.-H. Chu, J. G. Analytis, C. Kucharczyk, and I. R.
Fisher. Phys. Rev. B. 79, 014506 (2009).
[13] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M.
He, and X. Chen.Phys. Rev. B. 82, 180520 (2010).
[14] A. F. Wang, J. J. Ying, Y. J. Yan, R. H. Liu, X. G.
Luo, Z. Y. Li, X. F. Wang, M. Zhang, G. J. Ye, P.
Cheng, Z. J. Xiang, and X. H. Chen. Phys. Rev. B. 83,
060512 (2011).
[15] W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L.
Wang, X. Ma, J.-P. Hu, X. Chen, and Q.-K. Xue. Nat.
Phys. 8, 126 (2012).
[16] G. Just and P. Paufler. J. Alloys Compd. 232, 1 (1996).
[17] W. Dcorrscheidt, N. Neiss, and H. Schafer. Z.
Naturforsch. B 31, 890(1976).
[18] T. M. Chuang, M. P. Allan, Jinho Lee, Yang Xie, Ni Ni,
S. L. Bud’ko, G. S. Boebinger, P. C. Canfield, and
J. C. Davis, Science 327. 181 (2010).
[19] H. Fujii, and A. Sato. Phys. Rev. B. 79. 224552 (2009).
[20] J. W. Wang, I. A. Chen, T. L. Hung, Y. B. You, and H.
C. Ku. Phys. Rev. B. 85, 024538 (2012).
[21] H. C. Ku, J. W. Wang, I. A. Chen, Y. B. You, and Y. Y.
Hsu. J. Phys. Conf. Ser. 391, 012131 (2012).
[22] T. L. Hung, I. A. Chen, C. H. Huang, C. Y. Lin, C.
W.Chen, Y. B. You, H. C. Ku, S. T. Jian, M. C. Yang,
Y. Y. Hsu, Y. Y. Chen, and J. C. Ho, J. Low Temp.
Phys. 171, 148 (2012).
[23] H. C. Ku, I. A. Chen, C. H. Huang, C. W.Chen ,Y. B.
You, M. F. Tai and Y. Y. Hsu. Physic C, in press (2013)
(published online 4/8/2013).
[24] I. A. Chen, C. H. Huang, C. W.Chen, Y. B. You, M. F.
Tai, H. C. Ku, and Y. Y. Hsu. J Appl Phys 113, 213902
(2012).
[25] I. R. Shein and A. L. Ivanovskii. Physica B 405, 3213
(2010).
[26] C. D. Yang, H. C. Hsu, W. Y. Tseng, H. C. Chen,
H. C. Ku, M. N. Ou, Y. Y. Chen, and Y. Y. Hsu. J.
Phys. Conf. Ser 273, 012089 (2011).
[27] N. H. Sung, J.-S. Rhyee, and B. K. Cho. Phys. Rev. B
83, 094511 (2011).
[28] H. Fujii, and A. Sato, Journal of Alloys and Compounds
487, 198–201 (2009).
[29] B. T. Matthias, T. H. Gkballk and V. B. Compton,
Review of Modern Physics 35, 1-22 (1963).
[30] B. T. Matthias, Phys. Rev 92, 874 (1958).
[31] B. T. Matthias, Phys. Rev 90, 487 (1953).
[32] H. Pesterer and K. Schubert. Z. Metallk 41, 358 (1950).
[33] C. W.Chen, C. H. Huang, Y. B. You, M. F. Tai, Y. Y.
Hsu, and H. C. Ku, Journal of the physical society of
Japan. JAPS. Conf. Ser in press (2013)