研究生: |
江孟輯 Meng-Chi Chiang |
---|---|
論文名稱: |
胎盤內皮細胞蛋白質1在內皮細胞移動的角色之定性 Characterize the role of a novel protein, Placental Endothelial Protein 1 (PEP1) in endothelial cell (EC) migration. |
指導教授: |
莊永仁
Yung-Jen Chuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 人類臍帶靜脈內皮細胞 、細胞移動 |
外文關鍵詞: | HUVEC, cell migration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管新生(angiogenesis)和癌症的發展有密切的關係,當腫瘤尺寸大於2-3立方厘米時需要靠新生血管供給養分。又內皮細胞的增生與移動是形成新生血管時兩個很重要的步驟,為了了解內皮細胞的關鍵功能是如何被調控,我們利用生物資訊方法尋找會影響血管新生的基因。而藉由serial analysis of gene expression (SAGE)這個功能強大的生物資訊方法可以篩選出跟內皮細胞生長相關的新穎蛋白質,跟cDNA資料庫不同的是即使缺乏已知的相關資訊,SAGE仍可以分析完整的基因表現。我們則利用SAGE找到了一個在靜脈具有高度表現的新穎蛋白質-胎盤內皮細胞蛋白1(PEP1)。
PEP1中包括了許多凝血酶敏感蛋白-1 Thrombospondin type-1 (TSP-1)重複,TSP-1已知會抑制內皮細胞的移動能力,所以我們猜測PEP1可能也具有影響內皮細胞移動能力之特性。為了解PEP1是否會在體外影響內皮細胞移動,我們挑選了兩個片段為優先研究目標:第一個片段為C端尾端胜肽片段-c terminal end (CTE);另一個片段為介於第八與第九個TSP-1之間的胜肽片段-inter TSP-1 domain sequence 8 (IDS8)。
如預期結果顯示,CTE和 IDS8兩段胜肽片段會在體外促使人類臍帶靜脈內皮細胞移動能力,但不會影響其生長繁殖能力。總結我們的結果,證明了PEP1可能在血管新生扮演一定的角色,而且經由更多有關分子機制的調查,將可提供血管功能不全以及癌症更深層的研究。
Angiogenesis is known to play a critical role in cancer development. When tumor grows larger than 2-3 mm3, cancer mass needs to induce angiogenesis to sustain its nutrition needs. During the angiogenesis process, proliferation and migration of endothelial cells (ECs) are two important steps. In order to understand the transcript regulation governing these critical EC functions, we took the bioinformatic approach to identify genes that are involved in angiogenesis. Serial analysis of gene expression (SAGE) is a powerful bioinformatic tool to screen for novel proteins related to ECs growth. Unlike cDNA microarray, SAGE allows in silico analysis of overall gene expression with no need for preexisting sequence information. A novel protein, Placenta Endothelial Protein1 (PEP1) is found highly expressed in vein, was identified by SAGE.
PEP1 comprises of several thrombospondin type-1 (TSP-1) repeats. Since TSP-1 inhibits ECs migration, we hypothesize PEP1 may also involve in regulating similar EC function. Two regions of PEP1 are selected to test whether PEP1 could affect EC migration in vitro. The first one is the C Terminal End (CTE) of PEP1, and the other is an inter-TSP1-domain-sequence (IDS8).
As expected, the CTE and IDS8 of PEP1 promote the migration of Human Umbilical Vein Endothelial Cells (HUVECs) in vitro. In conclusion, our results demonstrate PEP1 is likely to play a role in angiogenesis and further study on the underlying mechanism may provide insight in vascular dysfunction and cancer research.
1. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527-3561.
2. Aird WC. Endothelial cell heterogeneity. Crit Care Med. 2003;31:S221-230.
3. Gastl G, Hermann T, Steurer M, et al. Angiogenesis as a target for tumor treatment. Oncology. 1997;54:177-184.
4. Chi JT, Chang HY, Haraldsen G, et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A. 2003;100:10623-10628.
5. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270:484-487.
6. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93:741-753.
7. Augustin HG, Reiss Y. EphB receptors and ephrinB ligands: regulators of vascular assembly and homeostasis. Cell Tissue Res. 2003;314:25-31.
8. Nakayama M, Kikuno R, Ohara O. Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res. 2002;12:1773-1784.
9. Kondo A, Hashimoto S, Yano H, Nagayama K, Mazaki Y, Sabe H. A new paxillin-binding protein, PAG3/Papalpha/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration. Mol Biol Cell. 2000;11:1315-1327.
10. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745-2756.
11. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-4680.
12. Sigrist CJ, Cerutti L, Hulo N, et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 2002;3:265-274.
13. Letunic I, Copley RR, Schmidt S, et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 2004;32:D142-144.
14. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105-132.
15. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567-580.
16. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16:10881-10890.
17. von Mering C, Jensen LJ, Snel B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433-437.
18. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning a laboratory manual.: Cold Spring Harbor Laboratory Press.; 1989.
19. Kowalczyk M, Bardowski J. Overproduction and purification of the CcpA protein from Lactococcus lactis. Acta Biochim Pol. 2003;50:455-459.
20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254.
21. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-685.
22. Dou L, Bertrand E, Cerini C, et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004;65:442-451.
23. Kueng W, Silber E, Eppenberger U. Quantification of cells cultured on 96-well plates. Anal Biochem. 1989;182:16-19.
24. Higa F, Kusano N, Tateyama M, et al. Simplified quantitative assay system for measuring activities of drugs against intracellular Legionella pneumophila. J Clin Microbiol. 1998;36:1392-1398.
25. Mshana RN, Tadesse G, Abate G, Miorner H. Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol. 1998;36:1214-1219.
26. Sid B, Sartelet H, Bellon G, et al. Thrombospondin 1: a multifunctional protein implicated in the regulation of tumor growth. Crit Rev Oncol Hematol. 2004;49:245-258.
27. Short SM, Derrien A, Narsimhan RP, Lawler J, Ingber DE, Zetter BR. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J Cell Biol. 2005;168:643-653.
28. Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta. 2006;1765:178-188.
29. Lu X, Lu D, Scully MF, Kakkar VV. Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins. Curr Med Chem Cardiovasc Hematol Agents. 2005;3:249-260.
30. Han DC, Rodriguez LG, Guan JL. Identification of a novel interaction between integrin beta1 and 14-3-3beta. Oncogene. 2001;20:346-357.
31. Walker JM. The Proteomics Protocols Handbook: Humana Press; 2005.
32. Diehn M, Sherlock G, Binkley G, et al. SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res. 2003;31:219-223.
33. Chuang YJ, Seo K, Hoffman J, Druzin M, Kuo C, Leung LLK. Placental endothelial protein-1, a novel vascular marker identified by SAGE transcript profiling; 2006.
34. Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn. 2000;218:280-299.
35. Paakkonen K, Tossavainen H, Permi P, et al. Solution structures of the first and fourth TSR domains of F-spondin. Proteins. 2006;64:665-672.
36. Tucker RP. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol. 2004;36:969-974.
37. Horwitz R, Webb D. Cell migration. Curr Biol. 2003;13:R756-759.
38. Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals from front to back. Science. 2003;302:1704-1709.