簡易檢索 / 詳目顯示

研究生: 柯崴傑
Ke, Wei-Chieh
論文名稱: 佈置最少感測器以建立覆蓋所有重要區域無線感測網路之研究
Study of Constructing a Wireless Sensor Network to Fully Cover Critical Areas by Deploying Minimum Sensors
指導教授: 蔡明哲
Tsai, Ming-Jer
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 71
中文關鍵詞: 無線感測網路
外文關鍵詞: wireless sensor network, coverage, NP-Complete
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測器網路由多個感測器連結而成,每個感測器都具有收集、處
    理、儲存環境資訊的能力,並且能夠藉由無線通訊與網路中其他感測器溝通。這些特質使得無線感測器網路被廣泛的應用在不同的實例中。許多應用中,譬如環境掌控、戰場監視、核武、生化、化學攻擊偵測等等,重要的區域和普通區域應該要被適當的鑑別。若感測區域過大,我們無法提供足夠預算或足夠數目的感測器覆蓋所有的感測區域,則監控重要區域比起普通區域更實際也更有效率。本論文證明了使用最少的感測器將感測器放置在格子點上建立一個可以覆蓋所有重要正三角形格子(或正方形格子),稱為CRITICAL-GRID COVERAGE (或CRITICAL-SQUARE-GRID COVERAGE)是NP-Copmlete問題。除此之外,一個逼近演算法被提出以解決CRITICAL-SQUARE-GRID COVERAGE問題。實驗結果顯示我們的演算法可以找出有效率的布置方法以解決CRITICAL-SQUARE-GRID COVERAGE問題。


    Wireless sensor networks are formed by connected sensors that each have the ability to collect, process, and store environmental information as well as communicate with others via inter-sensor wireless communication. These characteristics allow wireless sensor networks to be used in a wide range of applications. In many applications, such as environmental monitoring, battlefield surveillance, nuclear, biological, and chemical (NBC) attack detection, and so on, critical areas and common areas must be
    distinguished adequately, and it is more practical and efficient to monitor critical areas rather than common areas if the sensor field is large, or the available budget cannot provide enough sensors to fully cover the entire sensor field. This thesis proves that deploying sensors on grid points to construct a wireless sensor network that fully covers critical equilateral (or, square) grids using minimum sensors, termed CRITICAL-GRID COVERAGE (or, CRITICAL-SQUARE-GRID COVERAGE), is NP-Complete. In addition, approximation algorithms are proposed for CRITICAL-SQUARE-GRID COVERAGE.
    Simulations show that the proposed algorithms provide good solutions for CRITICAL-SQUARE-GRID COVERAGE.

    1 Introduction 1 2 Preliminaries 5 2.1 CRITICAL-GRID COVERAGE . . . . . . . . . . . . . . . . . . . . 6 2.2 CRITICAL-SQUARE-GRID COVERAGE . . . . . . . . . . . . . . 7 2.3 PLANAR 3-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 RECTILINEAR STEINER TREE . . . . . . . . . . . . . . . . . . . 9 2.5 EXACT COVER BY 3-SETS . . . . . . . . . . . . . . . . . . . . . 10 2.6 MINIMUM NODE-WEIGHTED STEINER TREE . . . . . . . . . 11 2.7 MINIMUM SET COVER . . . . . . . . . . . . . . . . . . . . . . . 13 2.8 RELAY NODE PLACEMENT . . . . . . . . . . . . . . . . . . . . 14 3 NP-Completeness of CRITICAL-GRID COVERAGE 15 4 NP-Completeness of CRITICAL-SQUARE-GRID COVERAGE 24 4.1 Junction and Crossover Units . . . . . . . . . . . . . . . . . . . . . 25 4.2 Polynomial-Time Reduction . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Correctness of Reduction . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 Case Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Approximation Algorithms for CRITICAL-SQUARE-GRID COV- ERAGE 44 5.1 STBCGCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2 Analysis of STBCGCA . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2.1 Correctness of STBCGCA . . . . . . . . . . . . . . . . . . . 46 5.2.2 Performance Guarantee . . . . . . . . . . . . . . . . . . . . . 50 5.2.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Heterogeneous Deployment . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.1 CRITICAL-SQUARE-GRID COVERAGE-H . . . . . . . . . 52 5.3.2 STBCGCA-H . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.3 Analysis of STBCGCA-H . . . . . . . . . . . . . . . . . . . 55 6 Performance Studies 56 6.1 Homogeneous Deployment . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.1 Number of Critical Grids . . . . . . . . . . . . . . . . . . . . 58 6.1.2 Sensing Range . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1.3 Distribution of Critical Grids . . . . . . . . . . . . . . . . . 61 6.1.4 Grid Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2 Heterogeneous Deployment . . . . . . . . . . . . . . . . . . . . . . . 63 7 Conclusions 65

    [1] X. Bai, S. Kumar, Z. Yun, D. Xuan, and T. H. Lai. Deploying wireless sensors to achieve both coverage and connectivity. In Procedings of ACM MobiHoc, Florence, Italy, 2006.
    [2] M. Cardei and D. Z. Du. Improving wireless sensor network lifetime through power aware organization. ACM/Springer J. Wireless Networks, 11(3):333–340, May 2005.
    [3] M. Cardei, M. T. Thai, Y. Li, and W. Wu. Energy-efficient target coverage in wireless sensor networks. In Proceedings of IEEE INFOCOM, Miami, FL, 2005.
    [4] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Computers, 51(12):1448–1453, Dec. 2002.
    [5] C. Y. Chang, C. T. Chang, Y. C. Chen, and H. R. Chang. Obstacle-resistant deployment algorithms for wireless sensor networks. IEEE Trans. Vehicular Technology, 58(6):2925–2941, July 2009.
    [6] Jianer Chen, Anxiao Jiang, Iyad A. Kanj, Ge Xia, and Fenghui Zhang. Separability and topology control of quasi unit disk graphs. In Proceedings of IEEE INFOCOM, Alaska, USA, 2007.
    [7] X. Cheng, D. Z. Du, L. Wang, and B. Xu. Relay sensor placement in wireless sensor networks. ACM/Springer J. Wireless Networks, Jan. 2007.
    [8] V. Chvatal. A combinatorial theorem in plane geometry. J. Combinatorial Theory Ser. B, 18:39–41, 1975.
    [9] V. Chvatal. A greedy heuristic for the set cover problem. Math. Opererations Research, 4(3):233–235, Aug. 1979.
    [10] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math., 86(1-3):165–177, Dec. 1990.
    [11] J.C. Creput, A. Koukam, T. Lissajoux, and A. Caminada. Automatic mesh generation for mobile network dimensioning using evolutionary approach. IEEE Trans. Evolutionary Computation, 9(1):18–30, Feb. 2005.
    [12] A. O. Fapojuwo and A. Cano-Tinoco. Energy consumption and message delay analysis of qos enhanced base station controlled dynamic clustering protocol for wireless sensor networks. IEEE Trans. Wireless Communications, 8(10):5366–5374, Oct. 2009.
    [13] M. R. Garey, R. L. Graham, and D. S. Johnson. Some np-complete geometric problems. In ACM STOC, pages 10–22, 1976.
    [14] X. Han, X. Cao, E. L. Lloyd, and C. C. Shen. Deploying directional sensor networks with guaranteed connectivity and coverage. In Proceedings of IEEE SECON, California, USA, 2008.
    [15] N. Heo and P. K. Varshney. An intelligent deployment and clustering algorithm for a distributed mobile sensor network. In Proceedings of IEEE SMC, Washington, D.C., 2003.
    [16] N. Heo and P. K. Varshney. Energy-efficient deployment of intelligent mobile sensor networks. IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and Humans, 35(1):78–92, Jan. 2005.
    [17] F. Hoffmann, M. Kaufmann, and K. Kriegel. The art gallery theorem for polygons with holes. In Proceedings of IEEE FOCS, New York, NY, 1991.
    [18] A. Howard, M. J. Matari’c, and G. S. Sukhatme. An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2):113–126, Sept. 2002.
    [19] A. Howard, M. J. Matari’c, and G. S. Sukhatme. Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Proceedings of DARS, Fukuoka, Japan, 2002.
    [20] C. F. Huang, Y. C. Tseng, and H. L. Wu. Distributed protocols for ensuring both coverage and connectivity of a wireless sensor network. ACM Trans. Sensor Networks, 3(1):5, Mar. 2007.
    [21] R. M. Karp. Complexity of Computer Communications. Plenum, 1972.
    [22] P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted steiner trees. J. Algorithms, 19(1):104–115, Jul. 1995.
    [23] D. Lichtenstein. Planar formulae and their uses. SIAM J. Computing, 11:329–343, 1982.
    [24] F. Y. S. Lin and P. L. Chiu. A simulated annealing algorithm for energy-efficient sensor network design. In Proceedings of ICST WiOpt, Trentino, Italy, 2005.
    [25] E. L. Lloyd and G. Xue. Relay node placement in wireless sensor networks. IEEE Trans. Computers, 56(1):134–138, Jan. 2007.
    [26] M. Ma and Y. Yang. Adaptive triangular deployment algorithm for unat- tended mobile sensor networks. IEEE Trans. Computers, 56(7):946–958, Jul. 2007.
    [27] J. B. M. Melissen and P. C. Schuur. Covering a rectangle with six and seven circles. Discrete Applied Math., 99(1):149–156, Feb. 2000.
    [28] Z. Merhi, M. Elgamel, and M. Bayoumi. A lightweight collaborative fault tolerant target localization system for wireless sensor networks. IEEE Trans. Mobile Computing, 8(12):1690–1704, Dec. 2009.
    [29] K. J. Nurmela. Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles. Experimental Math., 9(2):241–250, 2000.
    [30] K. J. Nurmela and P. R. J. Ostergard. Covering a square with up to 30 equal circles. Technical report, HUT-TCS-A62, 2000.
    [31] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
    [32] T. R. Park, K. J. Park, and M. J. Lee. Design and analysis of asynchronous wakeup for wireless sensor networks. IEEE Trans. Wireless Communications, 8(11):5530–5541, Nov. 2009.
    [33] K. K. Rachuri and C. Murthy. Energy efficient and scalable search in dense wireless sensor networks. IEEE Trans. Computers, 58(6):812–826, June 2009.
    [34] P. Ray and P. Varshney. Estimation of spatially distributed processes in wireless sensor networks with random packet loss. IEEE Trans. Wireless Communications, 8(6):3162–3171, June 2009.
    [35] A. Segev. The node-weighted steiner tree problem. Networks, 17(1):1–17, 1987.
    [36] S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless sensor
    networks. In Proceedings of IEEE ICC, Helsinki, Finland, 2001.
    [37] I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Pena. Physical layer impact on the design and performance of routing and broadcasting protocols in ad hoc and sensor networks. Computer Communications, 28(10):1138–1151, June 2005.
    [38] Ashok Agrawala Tamer Nadeem. IEEE 802.11 fragmentation-aware energy-efficient ad-hoc routing protocols. In Proceedings of IEEE MASS, Florida, USA, 2004.
    [39] M. J. Tsai, H. Y. Yang, B. H. Liu, andW. Q. Huang. Virtual-coordinate-based delivery-guaranteed routing protocol in wireless sensor networks. IEEE/ACM Trans. Networking, 17(4):1228–1241, Aug. 2009.
    [40] X. Xu, S. Sahni, and N. Rao. Minimum-cost sensor coverage of planar regions. In Proceedings of FUSION, Cologne, Germany, 2008.
    [41] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large sensor networks. J. Ad Hoc and Sensor Wireless Networks, 1(1):89–123, Jan. 2005.
    [42] Y. Zhou and K. Chakrabarty. Sensor deployment and target localization in distributed sensor networks. ACM Trans. Embedded Computing Systems, 3(1):61–91, Feb. 2004.
    [43] Z. Zhou, S. Das, and H. Gupta. Connected k-coverage problem in sensor networks. In Proceedings of ICCCN, Chicago, IL, 2004.
    [44] Y. Zou and K. Chakrabarty. A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks. IEEE Trans. Computers, 54(8):978–991, Aug. 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE