簡易檢索 / 詳目顯示

研究生: 江朝源
Chao-Yuan Chiang
論文名稱: 陽極使用二元合金觸媒之直接甲醇燃料電池在不同製備條件下的電化學特性分析
Electrochemical Characteristics of Direct Methanol Fuel Cells with Anode Catalysts Prepared by Binary Alloys under Various Synthesis Processes
指導教授: 蔡春鴻博士
Dr. Chuen-Horng Tsai
葉宗洸博士
Dr. Tsung-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 112
中文關鍵詞: 直接甲醇燃料電池陽極觸媒鉑釕電化學電氧化二元合金
外文關鍵詞: DMFC, Anode Catalyst, PtRu, Electrochemistry, Methanol Oxidation, Binary Alloy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直接甲醇燃料電池的發展在目前仍有很多方面的瓶頸,其中包括陽極觸媒催化效能的有效提升並減少CO對白金觸媒的毒化、減緩高分子電解質薄膜的甲醇穿透率等。本研究主要目的是期望提升陽極觸媒的催化效能,同時減少CO的毒化的現象以及甲醇的穿透,以獲得較高的電池功率密度。
    仿效Watanabe等人和Pattabiraman所提出的製程,加上濕式氫氣還原製備PtRu/C(1:1)觸媒,利用X光粉末繞射儀(X-ray Powder Diffraction)、穿透式電子顯微鏡(Transmission Electron Microscopy)、感應耦合電漿質譜(Inductively Coupled Plasma-Mass Spectrometer),分析觸媒型態與組成,並使用循環伏安法(Cyclic Voltammetry)、電化學阻抗(Electrochemical Impedance Spectrum),分析觸媒在半電池時的催化活性和抑制CO的毒化能力;之後再將PtRu/C觸媒當作陽極觸媒,利用Johnson Matthey Pt/C商業觸媒當作陰極觸媒,組裝成全電池(single cell),進行電壓電流特性曲線和電化學阻抗分析,以獲得其功率密度。
    將電化學的結果和Johnson Matthey的PtRu/C商業觸媒進行比較,可發現在實驗室自製的觸媒,雖然在半電池時電流密度較商業觸媒低,也就是總反應表面積較小,但有較佳的CO抑制能力和較強的催化活性;由此發現,可看到在全電池時,使用自製的觸媒所組成的全電池和利用商業觸媒組成的全電池其功率密度已相當接近。


    The advantages of direct methanol fuel cells (DMFC) over hydrogen fuel cells include easy storage of the high energy density liquid fuel, direct fuel feeding without reforming and low operating temperature. It is therefore considered by many people the most promising alternative power source for mobile applications and electric vehicles. Despite its advantages over hydrogen fuel cells, a few engineering obstacles of the DMFC remain to be overcame. The sluggish catalysis of the anode, on one hand, makes higher methanol concentration more favorable. The methanol permeation problem, on the other hand, generates a mixed potential at the cathode and adversely lowers the output voltage with high methanol concentration. Motivated by these two issues, we performed a thorough study of different methods of catalyst synthesis.

    Based on Watanabe et al. and Pattabiraman, we synthesize catalysts of Pt/Ru/C (1:1) by bubbling hydrogen. We then visualize the morphologies and the compositions of them by X-ray diffraction (XRD), transmission electronic microscopy (TEM), and inductively coupled plasma-mass spectrometer (ICP-MS). Their electrochemical behaviors in a half cell are analyzed by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS) using H2SO4 (1 M) + CH3OH (1 M). Their performances in a single cell at 30 ℃ and 60 ℃ were investigated, using methanol of 1 M and air, by EIS and IV characteristic curves.

    In the end we compare our home-made catalysts with commercial PtRu/C (1:1) catalysts from Johnson Matthey: As for a half cell, in spite of lower peak current densities, they triumph with lower peak potentials, less carbon monoxide poisoning and lower charge transfer impedance. In terms of power densities of a single cell, they compete well with commercial catalysts. Therefore, in operations of long periods of time, we consider our catalysts a good candidate for the anode of a DMFC.

    摘要 I Abstract II 致謝 III 主目錄 IV 圖目錄 VI 表目錄 X 第一章 前言 1 第二章 文獻回顧 2 2.1簡介 2 2.2直接甲醇燃料電池操作原理 3 2.3提升甲醇催化活性 6 2.3.1觸媒製備的改善 6 2.3.2電極的製作 19 2.3.3量測 30 2.4量測方法的改進 32 2.4.1起始電位(Onset Potential) 32 2.4.2全電池阻抗量測 32 2.4.3時間安培分析法 33 2.4.4旋轉電極 34 第三章 實驗方法與原理 35 3.1實驗藥品與設備 35 3.2觸媒製備方法 37 3.3試片製作與分析 50 3.4觸媒分析原理 52 第四章 結果與討論 55 4.1感應耦合電漿分析結果(ICP-MS) 55 4.2 x光粉末繞射分析結果(XPRD) 56 4.3穿透式電子顯微鏡分析結果(TEM) 64 4.4半電池電化學性質分析結果 68 4.4.1電化學阻抗 68 4.4.2循環伏安法 76 4.5全電池電化學性質分析結果 84 4.5.1電化學阻抗 85 4.5.2電壓電流特性曲線 93 4.5.3 實驗和模擬比較 105 第五章 結論 106 第六章 未來工作 108 第七章 參考文獻 109

    [1] Watanabe M, Uchida M, and Motoo S, Journal of Electroanalytic Chemistry, 229 (1987) 395.
    [2] Pattabiraman R, Proc. of The International Symp. on New Materials for Fuel Cells Systems, (1995) 362.
    [3] James Larminie and Andrew Dicks, Fuel Cell Systems Explained 2nd, (2003) Ch1 , Wiley.
    [4] 鄭耀宗、徐耀昇,燃料電池技術進步的現況分析,八十八年節約能源論文發表會論專輯,(1999) 409.
    [5] Kai Sundmacher, and Keith Scott, Chemical Engineering Science, 54 (1999) 2927.
    [6] Arico A S, Creti P, Kim H, Mantegna R, Giordano N, and Antonucci V, Journal of The Electrochemical Society, 143 (1996) 3950.
    [7] Hamnett A, Catalysis Today, 38 (1997) 445.
    [8] Gasteiger H A, Markovic N, Ross P N, and Cairns E J, Journal of Physical Chemistry, 98 (1994) 617.
    [9] Takasu Y, Fujiwara T, Murakami Y, Sasaki K, Oguri M, Asaki T, and Sugimoto W, Journal of The Electrochemical Society, 147 (2000) 4421.
    [10] Markovic N M, and Ross P N, Surface Science Reports, 45 (2002) 121.
    [11] Rauhe B R, Mclarnon F R, and Cairns E J, Journal of the Electrochemical Society, 142 (1995) 1073.
    [12] Wakabayashi N, Uchida H, and Watanabe M, Electrochemical and Solid-State Letters, 5 (2002) E65.
    [13] Carrette L, Friedrich K A, and Stimming U, Fuel Cells, 1 (2001) 5.
    [14] Abraham F F, Tsai N H, and Pounf G M, Surface science, 83 (1979) 406.
    [15] Temmerman L. DE, Creemers C, Hove H VAN, Hetens A, Bertolini J.C and Massardier J, Surface science, 178 (1986) 888.
    [16] Park K W, Choi J H, Kwon B K, Lee S A, Sung Y E, Ha H Y, Hong S A, Kim H, and Wieckowski A, Journal of Physical Chemistry B, 106 (2002) 1869.
    [17] Takasu Y, Sugimoto W, and Murakami Y, Catalysis Surveys from Asia, 7 (2003) 21.
    [18] Yahikozawa K, Tateishi N, Nishimura K, and Takasu Y, Chem. Exp., 7 (1992) 437.
    [19] Takasu Y, Iwazaki T, Sugimoto W, and Murakami Y, Electrochemistry Communications, 2 (2000) 671.
    [20] Gurau B, Viswanathan R, Liu R X, Lafrenz T J, Ley K L, Smotkin E S, Reddington E, Sapienza A, Chan B C, Mallouk T E, and Sarangapani S, Journal of Physical Chemistry B, 102 (1998) 9997.
    [21] Park K W, Choi J H, Lee S A, Pak C, Chang H, and Sung Y E, Journal of Catalysis, 224 (2004) 236.
    [22] Choi J H, Park K W, Kwon B K, and Sung Y E, Journal of The Electrochemical Society, 150 (2003) A973.
    [23] Arico A S, Poltarzewski Z, Kim H, Morana A, Giordano N, and Antonucci V, Journal of Power Sources, 55 (1995) 159.
    [24] Park K W, Sung Y E, Han S, Yun Y, and Hyeon T, Journal of Physical Chemistry B, 108 (2004) 939.
    [25] Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, Kasuya D, Takahashi K, Kokai F, Yudasaka M, and Iijima S, Physica B-Condensed Matter, 323 (2002) 124.
    [26] Li W Z, Liang C H, Zhou W J, Qiu J S, Zhou Z H, Sun G Q, and Xin Q, Journal of Physical Chemistry B, 107 (2003) 6292.
    [27] Chai G S, Yoon S B, Yu J S, Choi J H, and Sung Y E, Journal of Physical Chemistry B, 108 (2004) 7074.
    [28] Iwasita T, Hoster H, John-Anacker A, Lin W F, and Vielstich W, Langmuir, 16 (2000) 522.
    [29] Gasteiger H A, MarKović N, Ross P N, Jr. and Elton J. Cairns, Journal of The Electrochemical Society 141 (1994) 1795.
    [30] Antolini E, Journal of Materials Science, 38 (2003) 2995.
    [31] Schmidt T J, , Noeske M, Gasteiger H A, Behm R J, Britz P, Brijoux W, and Bonnemann H, Langmuir, 13 (1997) 2591.
    [32] Wang Xin, and Hsing I M, Electrochimica Acta, 47 (2002) 2981.
    [33] Mcnicol B D, and Short R T, Journal of Electroanalytical Chemistry, 81 (1977) 249.
    [34] Stoyanova A, Naidenov V, Petrov K, Nikolov I, Vitanov T, and Budevski E, Journal of Applied Electrochemistry, 29 (1999) 1197.
    [35] Sirk A H C, Hill J M, Kung S K Y, and Birss V I, Journal of Physical Chemistry B, 108 (2004) 689.
    [36] Goodman D W, Journal of Physical Chemistry, 96 (1992) 7814.
    [37] Gasteiger H A, Markovic N, Ross P N, Cairns Jr, and Chairns E J, Journal of Physical Chemistry, 98 (1994) 617.
    [38] Saeed Alerasool and Richard D. Gonzalez, Journal of Catalysis, 124 (1990) 204.
    [39] Watanabe M, Igarashi H, and Yosioka K, Electrochimica Acta, 40(1995) 329.
    [40] Ticianelli E A, Derouin C R, Redondo A, and Srinivasan S, Journal of The Electrochemical Society, 135(1988) 2209.
    [41] Arico A S, Shukl A K, EL-Khatib K M, Creti P, and Antonucci V, Journal of Applied Electrochemistry, 29 (1999) 671.
    [42] Antolini E, Giorgi L, Pozio A, and Passalacqua E, Journal of power source, 77 (1999) 136.
    [43] Ren X, Wilson M S, and Gottesfeld S, Journal of The Electrochemical Society, 143 (1996) L12.
    [44] Wilson M S, and Gottesfeld S, Journal of Applied Electrochemistry, 22 (1992) 1.
    [45] Kim Y M, Park K W, Choi J H, Park I S, and Sung Y E, Electrochemistry Communications, 5 (2003) 571.
    [46] Gasteiger H A, Ross P N, Cairns Jr and E J, Surface science, 293 (1993) 67.
    [47] Clavilier J, ELAchi k, and Rodes A, Chemical Physics, 141 (1990) 1.
    [48] Feliu J M, Orts J M, Fernandez-Vega A, Aldaz A, and Clavilier J, Journal of Electroanalytical Chemistry, 296 (1990) 191.
    [49] Weaver M J, Chang S C, Leung L W H, Jiang X, Rubel M, Szklarczyk M, Zurawski D, and Wieckowski A, Journal of Electroanalytical Chemistry, 327 (1992) 247.
    [50] Iwasita T, Electrochimica Acta, 47 (2002) 3663.
    [51] Ogletree D F, Van Hove M A, and Somorjai G A, Surface Science, 173 (1986) 351.
    [52] Rolison D R, Hagans P L, Swider K E, and Long J W, Langmuir, 15 (1999) 774.
    [53] Kabbabi A, Faure R, Durand R, Bedan B, Hahn F, Leger J M, and Lamy C, Journal of Electroanalytical Chemistry, 444 (1998) 41.
    [54] Zheng J P, and Jow T R, Journal of The Electrochemistry Society, 142 (1995) L6.
    [55] McKeown D A, Hagans P L, Carette L P L, Russell A E, Seider K E, and Rolison D R, Journal of Physical Chemistrty B, 103 (1999) 4825.
    [56] Long J W, Stroud R M, Swider K E, and Rolison D R, Journal of Physical Chemistry B, 104 (2000) 9772.
    [57] Zheng J P, Cygan P J, and Jow T R, Journal of The Electrochemical Society, 142 (1995) 2699.
    [58] Villullas H M, Mattos-Costa F I, and Bulhões L O S, Journal of Physical Chemistry B, 108 (2004) 12898.
    [59] Swider K E, Merzbacher C I, Hagans P L, and Rolison D R, Journal of Non-Crystalline Solids, 225 (1998) 348.
    [60] Long J W, Swider K E, Merzbacher C I, and Rolison D R, Langmuir, 15 (1999) 780.
    [61] Dmowski W, Egami T, Swider K E, Love C T, and Rolison D R, Journal of Physical Chemistry B, 106 (2002) 12677.
    [62] Lu Q, Yang B, Zhuang L, and Lu J, Journal of Physical Chemistry B, 109 (2005) 1715.
    [63] Lu C, Rice C, Masel R, Babu P, Waszczuk P, Kim H, Oldfield E, and Wieckowski A, Journal of Physical Chemistry B, 106 (2002) 9581.
    [64] Kawaguchi T, Sugimoto W, Murakami Y, and Takasu Y, Electrochemistry Communications, 6 (2004) 480.
    [65] Kho B K, Oh I H, Hong S A, and Ha H Y, Electrochimica Acta, 50 (2004) 781.
    [66] Ha S, Rice C A, Masel R I, and Wieckowski A, Journal of Power Sources, 112 (2002) 655.
    [67] Mueller J T, and Urban P M, Journal of power source, 75 (1998) 139.
    [68] Gasteiger H A, Marković N M, and Ross P N, Journal of Physical Chemistry, 99 (1995) 8945.
    [69] Gasteiger H A, Marković N M, and Ross P N, Catalysis Letters, 36 (1996) 1.
    [70] Torres G C, Iablonski E I, Baronetti G T, Castro A A, Demiguel S R, Scelza O A, Blanco M D, Jimenez M A P, and Rierro J L G, Applied Catalysis A-General, 161 (1997) 213.
    [71] Choi J H, Park K W, Park I S, Nam W H, and Sung Y E, Electrochimica Acta, 48 (2003) 2781.
    [72] Deivaraj T C, Lee J M, Journal of Power Sources, 142 (2005) 43.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE