研究生: |
吳寶同 Wu, Pao-Tung |
---|---|
論文名稱: |
利用表面電漿共振效應測量奈米級空氣間隙寬度方法 A method of measuring an air gap width in nanometer scale based on surface plasmon resonance |
指導教授: |
吳孟奇
Wu, Meng-Chyi 吳見明 Wu, Chien-Ming |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 表面電漿共振 、空氣間隙 、奈米 、Fabry-Perot effect |
外文關鍵詞: | Surface Plasmon Resonance, air gap, nanometer, Fabry-Perot effect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文提出了一種應用表面電漿共振(Surface Plasmon Resonance, SPR)技術來測量兩物體奈米級間隙寬度的方法。依不同入射角的反射光強度變化,並利用曲線擬合技術所能測得之最小空氣間隙寬度為126 nm,已超越光學繞射極限(Optical Diffraction Limit)。此方法之機制原理為當兩物體間空氣間隙縮小至入射光波長範圍時,不同入射角的反射光強度將隨著間隙距離持續減小的變化而產生明顯的改變。此時,全反射(Total Internal Reflection, TIR)峰將隨著空氣間隙的縮小而逐漸消失,隨後表面電漿共振角處之反射光強度即由最低值逐漸升高,並逐漸往大入射角位置漂移。
本論文中將說明利用表面電漿共振效應測量空氣間隙寬度的詳細原理與實驗過程,並透過模擬與實證的方式證明此一方法確為可行。更以幾種不同條件狀況(case)分別說明此一方法可拓展至不同材質物體間空氣間隙量測之應用。另外,本論文亦揭開了Otto組態難以被利用的原因,也揭櫫了在二金屬層間表面電漿波可發生耦合穿隧(couple tunneling)效應的證據,並發現了Fabry-Perot效應與SPR可在同一空氣間隙寬度共同發生的有趣現象。
Abstract
This dissertation demonstrates a novel nano-gap sensing technique based on the four-layer Kretschmann-Raether (K-R) configuration of Surface Plasmon Resonance (SPR) effect. Using this new measuring method, an air gap width of 126 nm, beyond the optical diffraction limit, has been achieved. We believe that the SPR gap measuring technique will produce many new applications, such as a position detector of a pickup head flying of a near-field disk drive, or as a position detector used in advanced lithography and stepper system.
In addition, an advanced application for the SPR gap width measuring technique used in a parallel metal-layer structure had been verified. A five-layer K-R configuration including the double-deck metal layers, i.e., prism/metal-1/air gap/metal-2/glass slide, for the air gap width measurement, had been developed. The results indeed indicate that the SPR effect would occur as the prediction of Fresnel’s equations for the five-layer structure in a specific condition. It is similar to the SPR effect in the four-layer K-R configuration. The SPR gap measuring method is still suitable for the metal-dielectric-metal structure.
Otherwise, because the Fabry-Perot (F-P) resonance and the surface plasmon wave (SPW) tunnel-coupled effects could occur in double-deck structure, it would affect the SPR angle shift effect in this five-layer structure, which is very different to the four-layer K-R configuration, and arises some limitation of the gap measurement used in double-deck metal layers structure.
References
[1]P. T. Wu, M. C. Wu, and C. M. Wu, Proc. of SPIE Vol. 6324, 632415 (2006)
[2]P. T. Wu, M. C. Wu, and C. M. Wu, J. Appl. Phys. 102, 123111 (2007).
[3]P. T. Wu, M. C. Wu, and C. M. Wu, J. Appl. Phys. 107, 083111 (2010).
[4]Physics of Semiconductor Devices, edited by M. Shur (Prentice Hall, Englewood Cliffs, N.J. 1990)
[5]Physics of Semiconductor Devices, 2nd section, edited by S. M. Sze (Wiley, New York ,1981)
[6]A. Otto, Z. Phys. 216, 398 (1968).
[7]E. Kretschmann and H. Raether, Z. Naturforsch B 23, 2135 (1968).
[8]T. T. Goodrich, H. J. Lee, and R. M. Corn, J. Am. Chem. Soc. Comm. 126, 4086 (2004).
[9]H. Yokota, K. Saito, and T. Yanagida, Phys. Rev. Lett., Vol. 80, 4606 (1998).
[10]J. S. Schildkraut, Appl. Opt., Vol. 27, pp.4587 (1988).
[11]F. Wang, Z.-Q. Cao, Q-S. Shen, S.-Z. Lv, and X. Li, J. Opt. A, Vol. 6, 1072 (2004).
[12]Y.-J. Jen, C.-H. Hsieh, and T.-S. Lo, Opt. Comm. 244, 269 (2005).
[13]A. Tredicucci, C. Gmachl, F. Capasso, L. Hutchinson, L. Sivco, and Y. Cho, Appl. Phys. Lett. Vol. 76, 2164 (2000)
[14]E. E. Moon, L. Chen, P. N. Everett, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 22(6), 3378 (2004).
[15]M. Suzuki, M. Fukuda, and H. Tsuyuzaki, Microelectronic Eng. 41/42, 291 (1998).
[16]J. de Rosny and M. Fink, Phys. Rev. Lett. 89, 124301 (2002)
[17]N. M. Lyndin, V. V. Svetikov, V. A. Sychugov, B. A. Usievich, and V. A. Yakovlev, Quantum Electron. 29, 817 (1999).
[18]X. Liu, Z. Cao, Q. Shen, and S. Huang, Appl. Opt. 42, 7137 (2003).
[19]E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698 (1999).
[20]F. Villa, T. Lopez-Rios, and L. E. Regalado, Phys. Rev. B 63, 165103 (2001).
[21]J. W. Chen and T. S. Liu, Mechatronics 14, 1141 (2004).
[22]X. Zhu, W. K. Choi, and S. T. Wu, IEEE Trans. on E.D. 49(11), 1863 (2002).
[23]J. K. Kim, M. S. Kim, J. H. Bae, J. H. Kwon, H. B. Lee, and S. H. Jeong, Appl. Opt. 39(16), 2584 (2000).
[24]Surface Plasmons, edited by H. Raether (Springer-Verlag, Berlin Heidelberg, 1988).
[25]Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, San Diego, 1985).
[26]E. De Bruijn, P. H. Kooyman, and J. Greve, Appl.Opt. 29, 1974 (1990).
[27]T. Tsang, T. Srinivasan-Rao, and J. Fischer, Phys. Rev. B 43, 8870 (1991).
[28]B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, Opt. Eng. 39, 362 (2000).