簡易檢索 / 詳目顯示

研究生: 呂柏昀
Lu, Po-Yun
論文名稱: 以飛秒光游離-光裂解光譜法研究雙官能基陽離子電荷轉移動態學
Femtosecond Photoionization-Photofragmentation Spectroscopic Studies of Charge Transfer Dynamics in Bifunctional Molecular Cations
指導教授: 鄭博元
Cheng, Po-Yuan
口試委員: 周佳駿
Chou, Chia-Chun
劉振霖
Liu, Chen-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 飛秒雷射脈衝光游離-光裂解電荷轉移
外文關鍵詞: Femtosecond laser pulse, Photoionization-Photofragmentation, Charge Transfer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們利用飛秒激發-探測光游離-光裂解技術研究MNA (N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine)與MPBA (methyl(4-phenylbutyl)amine)陽離子激發態的緩解動態學過程。我們使用波長266 nm的飛秒雷射,以1 + 1共振增強多光子游離技術將MNA及MPBA分子的苯環端局部游離,再根據實驗需求以波長798、771或399 nm的飛秒雷射作為探測脈衝,以偵測陽離子由D1 state緩解至D0 state動態學過程。我們以連續動力學模型擬合兩分子的離子損耗瞬時訊號並得到三個時間常數。我們指認τ1為陽離子在D1 state的初始分子內振動能重新分配過程;τ2為陽離子從D1 state緩解至D0 state的電荷轉移過程(τCT),其中MNA及MPBA離子的電荷轉移時間常數分別約為9.0及6.6 ps;而τ3為陽離子緩解至D0 state後的構型轉換再平衡過程。為了支持我們對2之指認,我們以相同技術研究無電荷轉移反應的PPN(3-phenylpropionitrile)陽離子,結果並沒有觀察到上述2時間量級的緩解過程,這強力支持了我們對2為電荷轉移時間常數之指認。另外,我們以理論計算估算兩分子的構型分佈及平均苯環中心至氮原子直線距離(Rave),並結合本論文與實驗室前人對一系列類似離子系統的實驗結果,發現電荷轉移反應速率與Rave的關係概略符合指數衰減趨勢。


    In this thesis, we employed femtosecond pump-probe photoionization-photofragmentation technique to study the relaxation dynamics of N-Methyl-1,2,3,4-tetrahydronaphthalen-2-amine (MNA) and Methyl(4-phenylbutyl)amine (MPBA) cations. These molecules are ionized by femtosecond pump pulse at 266 nm through 1+1 resonance-enhanced multiphoton ionization to locally ionize their phenyl group. Depending on specific experimental conditions, femtosecond probe pulses at 798, 771 or 399 nm were used to probe the relaxation dynamic from cationic D1 state to D0 state. We used a consecutive reaction kinetics model to fit the ion depletion transients, and we obtained three time constants. We assigned τ1 to the initial intramolecular vibrational energy redistribution occurring in the initially ionized D1 state. τ2 was assigned to the charge transfer in the cations from the D1 state to D0 state, and it was found to be about 9.0 and 6.6 ps for MNA and MPBA ions, respectively. Lastly, τ3 was assigned to the re-equilibrium process among all conformers in the D0 state. To support our assignment regarding τ2, we also studied 3-phenylpropionitrile (PPN) cation, a system in which charge transfer is expected to be energetically impossible, using the same technique. The results showed no relaxation dynamics in the similar time scale to the above-mentioned 2. This fact strongly supports our assignment of τ2 being related to the ionic charge transfer. In addition, we performed theoretical calculations to estimate conformational distributions and the average straight-line distance between the center of the phenyl ring and the nitrogen atom of the amine group (Rave). Combining results presented in this thesis and those reported by former group members of our laboratory, we found that the dependence of charge-transfer rate on Rave roughly conforms with an exponential decay relation.

    摘要--------------------------------------------I ABSTRACT---------------------------------------II 目錄------------------------------------------III 圖目錄------------------------------------------V 表目錄---------------------------------------VIII 第一章 緒論------------------------------------1 1.1引文-----------------------------------------1 1.2文獻回顧--------------------------------------3 1.3研究動機-------------------------------------10 第二章 實驗系統與技術--------------------------12 2.1激發-探測共振增強多光子游離技術 ---------------12 2.2共振增強多光子游離技術------------------------13 2.3激發-探測共振增強多光子游離技術----------------14 2.4飛秒雷射系統---------------------------------15 2.4.1振盪器系統---------------------------------16 2.4.2能量再生放大器------------------------------22 2.5倍頻與混頻系統--------------------------------28 2.6分子束系統-----------------------------------30 2.6.1超音速分子束--------------------------------31 2.6.2分子束樣品進氣裝置--------------------------34 2.6.3分子束實驗裝置------------------------------35 2.7飛行時間質譜儀--------------------------------37 2.8實驗光路設計----------------------------------40 2.9訊號擷取系統----------------------------------42 2.10儀器響應函數---------------------------------43 2.11藥品來源-------------------------------------44 第三章 實驗結果討論-----------------------------45 3.1 MNA及MPBA分子的飛秒雷射光游離質譜--------------45 3.1.1 MNA分子質譜--------------------------------45 3.1.2 MPBA分子質譜-------------------------------48 3.1.3 母離子及碎片離子訊號對激發脈衝能量之依存性----49 3.2 MNA與MPBA陽離子之離子損耗瞬時訊號--------------51 3.2.1 MNA陽離子之離子損耗瞬時訊號 ----------------51 3.2.2 MPBA陽離子之離子損耗瞬時訊號-----------------56 3.3 MNA與MPBA陽離子時間解析質譜--------------------57 3.4 離子損耗瞬時訊號動力學模型分析------------------59 3.5 無電荷轉移對照組-------------------------------66 第四章 理論計算與結果分析-------------------------69 4.1 中性S0 STATE構型------------------------------69 4.1.1 MNA分子-------------------------------------70 4.1.2 MPBA分子------------------------------------74 4.1.3陽離子電荷轉移速率與距離相依性之討論------------77 4.2陽離子D0 STATE之構型----------------------------80 4.2.1 MNA陽離子D0 state構型------------------------80 4.2.2 MPBA陽離子 ----------------------------------82 第五章 結論---------------------------------------85 附錄I----------------------------------------------87 附錄II---------------------------------------------88 附錄III--------------------------------------------90 附錄IV---------------------------------------------91 參考文獻--------------------------------------------92

    1.Barber, J.; Andersson, B., Revealing the blueprint of
    photosynthesis. Nature 1994, 370 (6484), 31-34.
    2.Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; Van Grondelle,
    R., Lessons from nature about solar light harvesting. Nat. Chem.
    2011, 3 (10), 763-774.
    3.Lyu, S.; Farré, Y.; Ducasse, L.; Pellegrin, Y.; Toupance, T.;
    Olivier, C.; Odobel, F., Push–pull ruthenium diacetylide complexes:
    new dyes for p-type dye-sensitized solar cells. RSC Adv. 2016, 6
    (24), 19928-19936.
    4.Shin, H.; Kim, B. M.; Jang, T.; Kim, K. M.; Roh, D. H.; Nam, J.
    S.; Kim, J. S.; Kim, U. Y.; Lee, B.; Pang, Y., Surface state‐
    mediated charge transfer of Cs2SnI6 and its application in dye‐
    sensitized solar cells. Adv. Energy Mater. 2019, 9 (3), 1803243.
    5.Schlag, E. W.; Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Lin, S.
    H., Distal charge transport in peptides. Angew. Chem., Int. Ed.
    2007, 46 (18), 3196-3210.
    6.Shah, A.; Adhikari, B.; Martic, S.; Munir, A.; Shahzad, S.;
    Ahmad, K.; Kraatz, H.-B., Electron transfer in peptides. Chem. Soc.
    Rev. 2015, 44 (4), 1015-1027.
    7.Yu, J.; Horsley, J. R.; Moore, K. E.; Shapter, J. G.; Abell, A.
    D., The effect of a macrocyclic constraint on electron transfer in
    helical peptides: a step towards tunable molecular wires. Chem.
    Commun. 2014, 50 (14), 1652-1654.
    8.Kawai, K.; Majima, T., Hole transfer kinetics of DNA. Acc. Chem.
    Res. 2013, 46 (11), 2616-2625.
    9.Meggers, E.; Michel-Beyerle, M. E.; Giese, B., Sequence dependent
    long range hole transport in DNA. J. Am. Chem. Soc. 1998, 120 (49),
    12950-12955.
    10.Isied, S. S.; Ogawa, M. Y.; Wishart, J. F., Peptide-mediated
    intramolecular electron transfer: long-range distance dependence.
    Chem. Rev. 1992, 92 (3), 381-394.
    11.Adams, D. M.; Brus, L.; Chidsey, C. E.; Creager, S.; Creutz,
    C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.;
    Marcus, R. A., Charge transfer on the nanoscale: current status. J.
    Phys. Chem. B 2003, 107 (28), 6668-6697.
    12.Gilbert, M.; Albinsson, B., Photoinduced charge and energy transfer
    in molecular wires. Chem. Soc. Rev. 2015, 44 (4), 845-862.
    13.Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R., Dynamics of
    photoinduced charge transfer and hole transport in synthetic DNA
    hairpins. Acc. Chem. Res. 2001, 34 (2), 159-170.
    14.Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R.,
    Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature
    1998, 396 (6706), 60-63.
    15.Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle,
    M., Energy gap law for nonradiative and radiative charge transfer
    in isolated and in solvated supermolecules. J. Phys. Chem. 1994, 98
    (30), 7289-7299.
    16.Jortner, J.; Bixon, M.; Wegewijs, B.; Verhoeven, J. W.;
    Rettschnick, R. P., Long-range, photoinduced charge separation in
    solvent-free donor—bridge—acceptor molecules. Chem. Phys. Lett.
    1993, 205 (4-5), 451-455.
    17.Weinkauf, R.; Schanen, P.; Yang, D.; Soukara, S.; Schlag, E.,
    Elementary processes in peptides: electron mobility and
    dissociation in peptide cations in the gas phase. J. Phys. Chem.
    1995, 99 (28), 11255-11265.
    18.鄭博元 Conference in Memory of the Nobel Laureate Ahmed Zewail 演講
    之投影片; 2018.
    19.Weinkauf, R.; Lehr, L.; Metsala, A., Local ionization in 2-
    phenylethyl-N, N-dimethylamine: charge transfer and dissociation
    directly after ionization. J. Phys. Chem. A 2003, 107 (16), 2787-
    2799.
    20.Lehr, L.; Horneff, T.; Weinkauf, R.; Schlag, E., Femtosecond
    dynamics after ionization: 2-phenylethyl-N, N-dimethylamine as a
    model system for nonresonant downhill charge transfer in peptides.
    J. Phys. Chem. A 2005, 109 (36), 8074-8080.
    21.Sun, S.; Bernstein, E., Spectroscopy of neurotransmitters and their
    clusters. 1. Evidence for five molecular conformers of
    phenethylamine in a supersonic jet expansion. J. Am. Chem. Soc.
    1996, 118 (21), 5086-5095.
    22.Li, S.; Bernstien, E.; Seeman, J., Stable conformations of
    benzylamine and N, N-dimethylbenzylamine. J. Phys. Chem. 1992, 96
    (22), 8808-8813.
    23.Law, K.; Bernstein, E., Molecular jet study of van der waals
    complexes of flexible molecules: n‐propyl benzene solvated by small
    alkanesa. J. Chem. Phys. 1985, 82 (7), 2856-2866.
    24.Sun, S.; Mignolet, B.; Fan, L.; Li, W.; Levine, R. D.; Remacle,
    F., Nuclear motion driven ultrafast photodissociative charge
    transfer of the penna cation: an experimental and computational
    study. J. Phys. Chem. A 2017, 121 (7), 1442-1447.
    25.宋桓宇. 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究. 國立清華
    大學碩士論文, 2018.
    26.楊博竣. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研
    究. 國立清華大學碩士論文, 2017.
    27.Closs, G.; Calcaterra, L.; Green, N.; Penfield, K.; Miller, J.,
    Distance, stereoelectronic effects, and the Marcus inverted region
    in intramolecular electron transfer in organic radical anions. J.
    Phys. Chem. 1986, 90 (16), 3673-3683.
    28.Closs, G. L.; Miller, J. R., Intramolecular long-distance electron
    transfer in organic molecules. Science 1988, 240 (4851), 440-447.
    29.Johnson, M. D.; Miller, J. R.; Green, N. S.; Closs, G. L.,
    Distance dependence of intramolecular hole and electron transfer in
    organic radical ions. J. Phys. Chem. 1989, 93 (4), 1173-1176.
    30.顏暐儒. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究. 國立
    清華大學碩士論文, 2019.
    31.涂宸瑄. 以超快時間解析光分解光譜研究光游離誘發雙官能基陽離子電荷轉移動態
    學. 國立清華大學碩士論文, 2020.
    32.Diedhiou, M.; West, B. J.; Bouwman, J.; Mayer, P. M., Ion
    Dissociation Dynamics of 1, 2, 3, 4-Tetrahydronaphthalene: Tetralin
    as a Test Case For Hydrogenated Polycyclic Aromatic Hydrocarbons.
    J. Phys. Chem. A. 2019, 123 (51), 10885-10892.
    33.Selim, E. T.; Helal, A., The study of C1 C3 monosubstituted alkyl
    benzenes by the inverse convolution of first differential
    ionization efficiency curves. Org. Mass Spectrom. 1982, 17 (11),
    539-543.
    34.Staley, R. H.; Kleckner, J. E.; Beauchamp, J., Relationship
    between orbital ionization energies and molecular properties.
    Proton affinities and photoelectron spectra of nitriles. J. Am.
    Chem. Soc. 1976, 98 (8), 2081-2085.
    35.Frisch, M.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
    Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;
    Mennucci, B.; Petersson, G., Gaussian 09, revision D. 01. Gaussian,
    Inc., Wallingford CT: 2009.
    36.Burns, L. A.; Mayagoitia, Á. V.-.; Sumpter, B. G.; Sherrill, C.
    D., Density-functional approaches to noncovalent interactions: A
    comparison of dispersion corrections (DFT-D), exchange-hole dipole
    moment (XDM) theory, and specialized functionals. J. Chem. Phys.
    2011, 134 (8), 084107.
    37.Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density
    functionals with damped atom–atom dispersion corrections. Phys.
    Chem. Chem. Phys. 2008, 10 (44), 6615-6620.
    38.Li, A.; Muddana, H. S.; Gilson, M. K., Quantum mechanical
    calculation of noncovalent interactions: a large-scale evaluation
    of PMx, DFT, and SAPT approaches. J. Chem. Theory Comput. 2014, 10
    (4), 1563-1575.
    39.Amirav, A.; Even, U.; Jortner, J., Cooling of large and heavy
    molecules in seeded supersonic beams. Chem. Phys. 1980, 51 (1-2),
    31-42.
    40.Johnson, W. S.; Bauer, V. J.; Margrave, J. L.; Frisch, M. A.;
    Dreger, L. H.; Hubbard, W. N., The energy difference between the
    chair and boat forms of cyclohexane. the twist conformation of
    cyclohexane. J. Am. Chem. Soc. 1961, 83 (3), 606-614.

    QR CODE