研究生: |
吳孟筠 Wu, Meng Yun |
---|---|
論文名稱: |
利用電漿輔助化學氣相沉積法鍍製四分之一波長厚度SiN0.40/SiO2堆疊之室溫機械損耗 Room Temperature Mechanical Loss of SiN0.40/SiO2 Quarter-wave Stacks Deposited by Plasma Enhanced Chemical Vapor Deposition Method |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: |
王立康
Wang,Likarn 陳至信 Chen, Jyh Shin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 電漿輔助化學氣相沉積系統 、機械損耗 、堆疊 、二氧化矽 、氮化矽 、雷射干涉重力波偵測 |
外文關鍵詞: | PECVD, mechanical loss, stack, silicon dioxide, silicon nitride, laser interference gravitational waves detector |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西元1915年Albert Einstein廣義相對論中提出重力波的相關理論,於1974年Hulse與Taylor藉由觀測脈衝雙星系統Binary pulsar system,間接證實重力波的存在,直到最近2015年9月14日,雷射干涉重力波組織(LIGO)位於Hanford,WA,及Livingston, LA,的兩座觀測站皆偵測到了重力波訊號,終於重力波的存在被證實,此成果除了驗證了廣義相對論之外,由於重力波可應用於星體和天文現象的觀測,因此對於宇宙天文學研究也有相當大的貢獻。而重力波的訊號很微弱,故需要盡可能地降低雜訊來源,以提高系統偵測的靈敏度,其中在頻率為40 ~ 400 Hz的範圍內是重力波偵測系統中雜訊最小的區間,此區間內的主要雜訊來源為Quantum noise與Coating Brownian noise,本實驗室致力於研究其中的Coating Brownian noise,是反射鏡上光學薄膜所產生的thermal noise,根據fluctuation-dissipation theorem得知thermal noise 跟dissipation呈正比關係,因此只要量測薄膜的機械損耗便可知薄膜熱擾動雜訊的程度。故研究目的為探討低機械損耗之高反射鏡鍍膜材料,以提高重力波偵測之靈敏度。
本實驗室欲開發以電漿輔助化學氣相沉積系統(PECVD)製程鍍製重力波偵測之高反射鏡薄膜,製程規格需要可以鍍製大面積且薄膜均勻度佳的鍍膜技術,其中PECVD具有製程溫度低、薄膜沈積速度快、且有好的階梯覆蓋能力及均勻度佳等優點,而到目前為止已使用PECVD鍍製並研究過a-Si、SiO2及SiNx (其中包括SiN0.40、SiN0.49、SiN0.65、SiN0.79、與SiN0.87五種成分比例)等材料,當中的SiNx薄膜可作為高折射率材料與SiO2(作為低折射率材料)堆疊高反射鏡,其機械損耗非常低之外,於長波段的光學消散係數也相當的小,是相當適合作為鍍製高反射鏡的材料。於先前的研究結果顯示SiNx隨著Si、N比例的改變,楊氏係數、應力與折射率都有很大的差異,比較過各成分比例之折射率與應力大小之後,本研究選擇以SiN0.40與SiO2堆疊光學薄膜,因其折射率差異較大且應力可以相互抵消,故使用電漿輔助化學氣相沉積系統(PECVD)鍍製SiO2 / SiN0.40堆疊1-pair、2-pair、3-pair及4-pair之膜層結構,並探討其機械損耗為何。
本實驗使用電漿輔助化學氣相沉積的方式鍍製四分之一1550 nm波長厚度的SiN0.40與SiO2之堆疊膜層,1-pair、2-pair、3-pair、4-pair在室溫量測頻率於100Hz之機械損耗均為10-5 order,此結果低於目前重力波觀測所使用的高反射鏡材料:600℃退火下之Ta2O5摻雜14.5%的TiO2與SiO2兩者堆疊(the 600℃ annealed 14.5% TiO2 - doped Ta2O5 / SiO2),且SiO2 / SiN0.40之製程溫度均為300℃,其退火後之機械損耗還會再降低,因此SiO2 / SiN0.40非常值得再繼續深入研究,是相當適合作為重力波偵測之高反射鏡鍍膜的材料。
In 1915, gravitational waves in the theory of general relativity has been propounded by Albert Einstein, after that, in 1974, Hulse and Taylor had indirectly observed the existence of gravitational waves in a binary pulsar system. However , no one had directly confirmed its existence until 14th January 2015: the two detectors located at Hanford, WA and Livingston, LA of the Laser Interferometer Gravitational-Wave Observatory (LIGO) had simultaneously observed a gravitational wave. The finding has not only confirmed the existence of gravitational wave in the theory of general relativity, but also contributed greatly to astronomical observations.
However, the signal of gravitational wave is extremely weak, so the noise should be reduced as low as possible. Much research in our laboratory has been devoted to investigating the coating Brownian noise, which is the thermal noise caused by the optical coating on the high reflective mirror. According to Fluctuation-Dissipation theorem, the thermal fluctuation (thermal noise) is proportional to mechanical dissipation (mechanical loss) in the material. Therefore, as long as we measure the mechanical loss of films, we can deduce the thermal noise of films as well.
We investigated plasma-enhanced chemical vapor deposition (PECVD) method aimed for LIGO to deposit HR mirror coating. It has many advantages such as low processing temperature, fast deposition, and good uniformity for film. So far, amorphous silicon (a-Si), silicon dioxide (SiO2), and silicon nitride (SiNx) deposited by PECVD method had been studied. The different compositions of silicon nitride (SiNx) films can be deposited by PECVD with different gas flow ratio between SiH4 and NH3 while the stress and refractive index varied with nitrogen concentration. In this research, we selected SiO2 to be low index material and SiN0.40 to be high index material for optical coating because of the high index difference and stress compensation between these two materials. Therefore, we investigated the mechanical loss of SiN0.40/SiO2 quarter-wave (QW) stacks from 1 to 4 pairs at room temperature which were deposited by PECVD system furthermore the QW were the thickness of a quarter wavelength at 1550nm.
The results of this study, the mechanical loss of SiNx/SiO2 stacks with 1 to 4 pairs were investigated at room temperature, and the loss were in 10-5 order at 100 Hz, lower than the material used in current gravitational wave detector. The most important thing is that the coating loss would more reduce by thermal annealing and thus SiNx/SiO2 is worthy of further study as HR mirror coating for LIGO.
[1] R. A. Hulse et al. Discovery of a pulsar in a binary system. The Astrophysical journal 195 (1975) L51
[2] B. P. Abbott, et al. Observation of Gravitational Waves from a Binary Black Hole Merger. PRL 116, 061102, 2016.
[3] LIGO Scientific Collaboration Group. Instrument science white paper. Oct. 2011, LIGO- T1100309-v5: 7
[4] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 1951, 83: 34-40
[5] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., Sep. 1951, 83: 1231-1235
[6] H. B. Callen, R. F. Greene. On a theorem of irreversible thermodynamics. Phys. Rev., Jun. 1952, 86: 702-710
[7] Y. H. Juang. Stress effect on mechanical loss of the SiNx film deposited with PECVD method on silicon cantilever and setup for the loss measurement improvement. Master thesis, National Tsing Hua University, Aug. 2014
[8] K. Hejduk, K. Pierscinski, W. Rzodkiewicz, et al. Dielectric coatings for infrared detectors. Opt. Appl., 2005, XXXV: 437-442
[9] American Institute of Physics, Sep. 2015, Advanced gravitational-wave detectors open their ears, from http://physicstoday.scitation.org/doi/pdf/10.1063/PT.3.2907
[10] 李正中. 薄膜光學與鍍膜技術. 藝軒圖書出版社, Apr. 2012, 第七版: 155-160, ISBN: 978-9-576-16970-0
[11] Z. Z. Xie. Study of the optical-mechanical properties of amorphous silicon and silicon dioxide fabricated by Plasma Enhance Chemical Vapor Deposition (PECVD). Master thesis, National Tsing Hua University, Apr. 2015
[12] T. J. Quinn et al. Stress-dependent damping in Cu-Be torsion and flexure suspensions at stresses up to 1.1 GPa. Physics Letter A 197 (1995) 197
[13] W. Y. Wang. Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector. Master thesis, National Tsing Hua University, Aug. 2013
[14] C. W. Lee. Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application. Master thesis, National Tsing Hua University, Aug. 2013
[15] S. Y. Huang. Stress and mechanical loss study for the double-side coated SiNx films on silicon cantilever. Master thesis, National Tsing Hua University, Oct. 2015
[16] 國家奈米元件實驗室(NAR Labs), T19-Oxford PECVD 標準製程參數
[17] D. L. Smith, A. S. Alimonda, C. C. Chen, et al. Mechanism of SiNxHy deposition from NH3-SiH4 plasma. J. Electrochem. Soc., Feb. 1990, 137: 614-623
[18] J. N. Chiang, D. W. Hess. Mechanistic considerations in the plasma deposition of silicon nitride films. J. Electrochem. Soc., Jul. 1990, 137: 2222-2226
[19] Sami Franssila. Introduction to Microfabrication. John Wiley & Sons, 2004, Ch5.5:51-53, ISBN: 978-0-470-85106-7
[20] S. T. Thornton, J. B. Marion. Classical dynamics of particles and systems. Brooks Cole, 2003, 5: 109-121, ISBN: 978-0-534-40896-1
[21] B. S. Berry, W. C. Pritchet. Vibrating reed internal friction apparatus for films and foils. IBM journal of research and development, 1975, 19: 334
[22] D. R. M. Crooks. Mechanical loss and its significance in test mass mirrors of gravitational wave detectors. Ph.D. thesis, University of Glasgow, 2002, 121-123
[23] X. Liu, R. O. Pohl. Low-energy excitations in amorphous films of silicon and germanium. Phys. Rev. B, Oct. 1998, 58: 9067-9081
[24] B. E. W. Jr., R. O. Pohl. Thin films: stresses and mechanical properties V: Elastic properties of thin films. Mater. Res. Soc., Pittsburgh, Jun. 1995, No.356: 567-572, ISBN: 978-1-558-99257-3
[25] H. C. Tsai, W. Fang. Determining the Poisson's ratio of thin film materials using resonant method. Sensors and Actuators A, 2003, 103: 377-383
[26] M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon? Journal of Microelectromechanical system, Apr. 2010, 19: 229
[27] T. Y. Zhang, Y. J. Su, C. F. Qian, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta mater., Mar. 2000, 48: 2843-2857
[28] B. A. Walmsley, Y. Liu, X. Z. Hu, et al. Poisson’s ratio of low-temperature pecvd silicon nitride thin films. J. Microelectromechanical Syst., Jun. 2007, 16: 622-627
[29] V. Ziebart, O. Paul, U. Munch, et al. Thin-Films: stresses and mechanical properties VII: A novel method to measure Poisson’s ratio of thin films. Cambridge University Press, 1998, 27-32, ISBN: 978-1-107-41330-6
[30] C. L. Dai. A resonant method for determining mechanical properties of Si3N4 and SiO2 thin films. Materials Letters, Jun. 2007, 61: 3089-3092
[31] R. G. Christian. The theory of oscillating-vane vacuum gauges. Pergamon Press Ltd, Feb. 1966, 16: 175-178
[32] A. W. Heptonstall. Characterisation of Mechanical Loss in Fused Silica Ribbons for use in Gravitational Wave Detector Suspensions. Ph. D. thesis, University of Glasgow, Aug. 2004
[33] D. F. McGuigan, C. C. Lam, R. Q. Gram, et al. Measurements of the mechanical Q of single- crystal silicon at low temperature. Journal of Low Temperature Physics, Jun. 1978, 30: 621-629
[34] A. S. Nowick, B. S. Berry. Anelastic relaxation in crystalline solid. New York: Academic Press, 1972, ISBN: 978-0-125-22650-9
[35] J. B. Wachtman, Jr., W. E. Tefft, et al. Exponential temperature dependence of Young’s modulus for several oxides. Phys. Rev., Jun. 1961, 122: 1754
[36] M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon? Journal of Microelectromechanical system, Apr. 2010, 19: 229
[37] S. Reid, G. Cagnoli, D. R. M. Crooks, et al. Mechanical dissipation in silicon flexures. Phys. Lett. A, Dec. 2006, 351: 205
[38] Arno Lenk, Rüdiger G. Ballas, et al. Electromechanical Systems in Microtechnology and Mechatronics: Electrical, Mechanical and Acoustic Networks, their Interactions and Applications. Springer Science & Business Media, 2010, A.4.1:428-429, ISBN: 978-3-642-10806-8
[39] Institute for Microelectronics (n.d.), 2.1 Silicon Dioxide Properties, from http://www.iue.tuwien.ac.at/phd/filipovic/node26.html
[40] Chuen-Lin Tien, Tsai-Wei Lin. Thermal expansion coefficient and thermomechanical properties of SiNx thin films prepared by plasma-enhanced chemical vapor deposition. Applied Optics, Oct. 2012, 51: 7229-7235
[41] Massachusetts Institute of Technology (n.d.), Material: PECVD Silicon Nitride, from http://www.mit.edu/~6.777/matprops/pecvd_sin.htm
[42] Jessica Steinlechner, Iain W. Martin, Jim Hough, et al. Thermal noise reduction and absorption optimization via multimaterial coatings. Phys. Rev. D 91 (Feb. 2015), 042001
[43] Steven D. Penn, Peter H. Sneddon, Helena Armandula, et al. Mechanical Loss in Tantala/Silica Dielectric Mirror Coatings. Class. Quant. Grav. 20 (2003) 2917-2928 gr-qc/0302093
[44] Gregory M Harry, Matthew R Abernathy, Andres E Becerra-Toledo, et al. Titania-doped tantala/silica coatings for gravitational-wave detection. Class. Quant. Grav. 24 (2007) 405-416 gr-qc/0610004
[45] D R M Crooks, G Cagnoli, M M Fejer, et al. Experimental measurements of mechanical dissipation associated with dielectric coatings formed using SiO2, Ta2O5 and Al2O3. Class. Quantum Grav. 23 (2006) 4953-4965
[46] Gregory M. Harry, Andri M. Gretarsson, Peter R. Saulson, et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quant. Grav. 19 (2002) 897-918 gr-qc/0109073
[47] I. W. Martin. Studies of materials for use in future interferometric gravitational wave detectors. Ph. D. thesis, University of Glasgow, Feb. 2009
[48] I. W. Martin. Mechanical loss of crystalline and amorphous coatings, GWADW, Takayama, May 2014
[49] T. H. Richards. Energy Methods in Stress Analysis, Halsted Press: a division of John Wiley & Sons Inc, 1977, 1:428-429, ISBN: 978-0-470-98960-2
[50] S. J. Wang. Fabrication and annealing study of the ion beam sputtered nano-layer structures in the high reflective dielectric mirror for the laser interference gravitation wave detector, Master thesis, National Tsing Hua University, Aug. 2013