簡易檢索 / 詳目顯示

研究生: 洪偉誠
Hong, Wei-Cheng
論文名稱: 從C12-PDI分離和脫附碳十二烷基的Au-PDI鏈
Au-PDI chains from C12-PDI detachment and desorption of C12 alkyl
指導教授: 霍夫曼
Hoffmann, Germar
口試委員: 唐述中
Tang, Shu-Jung
杜鶴芸
Du, He-Yun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 71
中文關鍵詞: 烷基保護基掃描穿隧式顯微鏡菲烯
外文關鍵詞: Alkyl, Protective group, Scanning Tunneling Microscopy, Phenacene
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機半導體相比矽基半導體具有許多優勢,如低溫製造、柔性和低成本等。然而,開發高性能n型有機半導體對實現n型有機場效電晶體(OFETs)至關重要。

    在本篇論文中,我們研究了在Au(111)表面上的C$_{12}$-PDI,該分子在苉(Picene)核長軸方向上引入了酰亞胺基(Imide)。目的是探索烷基鏈的性質及其作為保護基的潛力。所有掃描穿隧顯微鏡(STM)和掃描穿隧能譜(STS)測量均在77K和超高真空中的Au(111)基板上進行。
    透過不同的製備和加熱,我們觀察了烷基鏈脫離過程的溫度依賴性。
    我們成功實現了對烷基鏈的熱控制。這項研究展示了透過表面合成實現高性能n型有機半導體的可能性。
    此外,我們也開發了一個基於Arduino的監測系統。該系統利用人耳作為固有的傅立葉變換(FFT)分析器,為監測隧道電流提供了更可靠的方法。 並且對STM的電流導線進行了更加牢固的維修,使他不會在時間的作用下再次損壞。


    Organic semiconductors offer advantages over silicon-based semiconductors, such as low-temperature manufacturing, flexibility, and lower cost. However, developing high-performance n-type organic semiconductors is crucial to realizing n-type OFETs.

    In my MSc research, we studied the adsorption of C$_{12}$-PDI, incorporating imides along the long-axis direction of the picene core. To explore the properties of alkyl and their potential as the protecting group. All the scanning tunneling microscope (STM) and scanning tunneling spectroscopy (STS) measurements are done on an Au(111) surface at 77K and in ultra-high vacuum.
    With different preparations and heatings, we observed the temperature dependence of the alkyl chain detachment process.
    We successfully achieved the thermal control of the alkyl chains.

    Additionally, we present an Arduino-based monitoring process. Using the human ears as the inherent Fast Fourier Transform(FFT) machine which provides a more reliable way to spy the tunneling current.
    We also carried out more robust repairs on the STM current cable to prevent them from breaking again over time.

    Abstract Chinese Abstract Acknowledgment Content 1 Introduction . . . . . . . . . . . . . . . . . . . . . 6 2 Background . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Quantum tunneling . . . . . . . . . . . . . . . . .7 2.1.2 Scanning Tunneling Spectroscopy(STS) . . . . . . . 9 2.2 Instrumentation . . . . . . . . . . . . . . . . . . 9 2.3 Molecules on surface . . . . . . . . . . . . . . . . 12 2.4 Repairing of the current cable . . . . . . . . . . . 13 2.4.1 Problem . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 Cable Repairing . . . . . . . . . . . . . . . . . .15 3 Acoustic Monitoring. . . . . . . . . . . . . . . . . . 18 3.1 Components . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Mega2560 . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 interrupt . . . . . . . . . . . . . . . . . . . . 21 3.1.3 MCP4725 . . . . . . . . . . . . . . . . . . . . . 22 3.1.4 Inter-Integrated Circuit . . . . . . . . . . . . . 22 3.1.5 Result and problem . . . . . . . . . . . . . . . . 23 3.1.6 Improvement . . . . . . . . . . . . . . . . . . . .24 4 Experiments . . . . . . . . . . . . . . . . . . . . . .26 4.1 Au(111) substract . . . . . . . . . . . . . . . . . .26 4.2 Molecules . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 C12-PDI . . . . . . . . . . . . . . . . . . . . . .27 4.2.2 4-(4-Biphenylyl)2,6-Diphenylphenol . . . . . . . . 28 4.3 Literature review . . . . . . . . . . . . . . . . . .29 4.3.1 Alkyl adsorption . . . . . . . . . . . . . . . . . 29 4.3.2 Alkyl detachment . . . . . . . . . . . . . . . . . 30 4.3.3 Alkane desorption . . . . . . . . . . . . . . . . .32 4.3.4 Molecule-metal bonds . . . . . . . . . . . . . . . 33 4.4 Overview of three samples preparation . . . . . . . 34 4.4.1 RT Preparation . . . . . . . . . . . . . . . . . . 37 4.4.2 Mild Heating . . . . . . . . . . . . . . . . . . . 43 4.4.3 High heating . . . . . . . . . . . . . . . . . . . 47 4.5 Molecule behavior . . . . . . . . . . . . . . . . . .49 4.5.1 Bias dependence . . . . . . . . . . . . . . . . . .49 4.5.2 Cavity of structure A . . . . . . . . . . . . . . .51 4.5.3 STS . . . . . . . . . . . . . . . . . . . . . . . .53 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . 55 5 Summary . . . . . . . . . . . . . . . . . . . . . . . .59 6 Appendix:Arduino code. . . . . . . . . . . . . . . . . 61

    [1] Yuxin Guo, Kaito Yoshioka, Shino Hamao, Yoshihiro Kubozono, Fumito Tani,
    Kenta Goto, and Hideki Okamoto. Facile synthesis of picenes incorporating
    imide moieties at both edges of the molecule and their application to n-channel
    field-effect transistors. RSC Adv., 10:31547–31552, 2020.
    [2] Jesse T. E. Quinn, Jiaxin Zhu, Xu Li, Jinliang Wang, and Yuning Li. Recent
    progress in the development of n-type organic semiconductors for organic field
    effect transistors. J. Mater. Chem. C, 5:8654–8681, 2017.
    [3] Yoshiro Yamashita. Organic semiconductors for organic field-effect transistors.
    Science and Technology of Advanced Materials, 10(2):024313, April
    2009.
    [4] Afra Al Ruzaiqi, Hideki Okamoto, Yoshihiro Kubozono, Ute Zschieschang,
    Hagen Klauk, Peter Baran, and Helena Gleskova. Low-voltage organic thinfilm
    transistors based on [n]phenacenes. Organic Electronics, 73:286–291,
    2019.
    [5] Shaotang Song, Jie Su, Mykola Telychko, Jing Li, Guangwu Li, Ying Li,
    Chenliang Su, Jishan Wu, and Jiong Lu. On-surface synthesis of graphene
    nanostructures with π-magnetism. Chem. Soc. Rev., 50:3238–3262, 2021.
    [6] G. Binnig, H. Rohrer, Ch. Gerber, and E.Weibel. Surface studies by scanning
    tunneling microscopy. Phys. Rev. Lett., 49:57–61, Jul 1982.
    [7] C. Julian Chen. Introduction to Scanning Tunneling Microscopy. Oxford
    University Press, March 2021.
    [8] Randall M Feenstra. Scanning tunneling spectroscopy. Surface Science,
    299–300:965–979, January 1994.
    [9] N. D. Lang. Spectroscopy of single atoms in the scanning tunneling microscope.
    Physical Review B, 34(8):5947–5950, October 1986.
    [10] Akash Gupta. On-surface polymerization. 2021.
    [11] Timo Carstens, Ren´e Gustus, Oliver H¨offt, Natalia Borisenko, Frank Endres,
    Hua Li, Ross J. Wood, Alister J. Page, and Rob Atkin. Combined
    stm, afm, and dft study of the highly ordered pyrolytic graphite/1-octyl-3-
    methyl-imidazolium bis(trifluoromethylsulfonyl)imide interface. The Journal
    of Physical Chemistry C, 118(20):10833–10843, 2014.
    [12] Zhiquan Jiang, Wenhua Zhang, Li Jin, Xin Yang, Faqiang Xu, Junfa Zhu,
    and Weixin Huang. Direct xps evidence for charge transfer from a reduced
    rutile tio2(110) surface to au clusters. The Journal of Physical Chemistry C,
    111(33):12434–12439, 2007.
    [13] ChengshanWang, Miodrag Micic, Mark Ensor, Sylvia Daunert, and Roger M.
    Leblanc. Infrared reflectionabsorption spectroscopy and polarizationmodulated
    infrared reflectionabsorption spectroscopy studies of the aequorin
    langmuir monolayer. The Journal of Physical Chemistry B, 112(13):4146–
    4151, 2008. PMID: 18324807.
    [14] R. Yamada and K. Uosaki. Two-dimensional crystals of alkanes formed on
    au(111) surface in neat liquid: structural investigation by scanning tunneling
    microscopy. The Journal of Physical Chemistry B, 104(25):6021–6027, 2000.
    [15] Terfort A.and Zharnikov M. Cyganik, P. Odd-even effects in the structure
    and properties of aryl-substituted aliphatic self-assembled monolayers. Nano
    Res., 17, 2024.
    [16] Dorota Chlebosz, Waldemar Goldeman, Krzysztof Janus, Micha l Szuster, and
    Adam Kiersnowski. Synthesis, solution, and solid state properties of homological
    dialkylated naphthalene diimides—a systematic review of molecules
    for next-generation organic electronics. Molecules, 28(7), 2023.
    [17] Le Quang Nhat. On-surface polymerization of 3,10-di(bromomethyl)-
    [5]phenacene on ag(111). 2024.
    [18] Steven L. Tait, Zdenek Dohn´alek, Charles T. Campbell, and Bruce D.
    Kay. n-alkanes on Pt(111) and on C(0001)∕Pt(111): Chain length dependence
    of kinetic desorption parameters. The Journal of Chemical Physics,
    125(23):234308, 12 2006.
    [19] Hideki Okamoto, Shino Hamao, Keiko Kozasa, YananWang, Yoshihiro Kubozono,
    Yong-He Pan, Yu-Hsiang Yen, Germar Hoffmann, Fumito Tani, and
    Kenta Goto. Synthesis of [7]phenacene incorporating tetradecyl chains in the
    axis positions and its application in field-effect transistors. J. Mater. Chem.
    C, 8:7422–7435, 2020.
    [20] Yong-He Pan. 3,12-ditetradecyl[7]phenacene on au(111). 2020.
    [21] Miao Yu, Wei Xu, Nataliya Kalashnyk, Youness Benjalal, Samuthira Nagarajan,
    Federico Masini, Erik Lægsgaard, Mohamed Hliwa, Xavier Bouju,
    Andre Gourdon, Christian Joachim, Flemming Besenbacher, and Trolle Linderoth.
    From zero to two dimensions: Supramolecular nanostructures formed
    from perylene-3,4,9,10-tetracarboxylic diimide (ptcdi) and ni on the au(111)
    surface through the interplay between hydrogen-bonding and electrostatic
    metal-organic interactions. Nano Research, 5, 12 2012.
    [22] Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan,
    Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia-
    Seng Chang, Germar Hoffmann, and Yukio Hasegawa. Scanning tunneling
    microscopy/spectroscopy of picene thin films formed on Ag(111). The Journal
    of Chemical Physics, 141(11):114701, 09 2014.
    [23] Xiji Shao, Xuhang Ma, Mingjing Liu, Tao Zhang, Yaping Ma, Chaoqiang Xu,
    Xuefeng Wu, Tao Lin, and Kedong Wang. Comparing study of picene thin
    films on snse and au(1 1 1) surfaces. Chemical Physics, 532:110689, 2020.
    [24] M Yano, M Endo, Yuri Hasegawa, R Okada, Yoichi Yamada, and Masahiro
    Sasaki. Well-ordered monolayers of alkali-doped coronene and picene: Molecular
    arrangements and electronic structures. The Journal of chemical physics,
    141:034708, 07 2014.
    [25] Yuri Hasegawa, Yoichi Yamada, Takuya Hosokai, Kaveenga Rasika
    Koswattage, Masahiro Yano, Yutaka Wakayama, and Masahiro Sasaki.
    Overlapping of frontier orbitals in well-defined dinaphtho[2,3-b:2′,3′-
    f]thieno[3,2-b]-thiophene and picene monolayers. The Journal of Physical
    Chemistry C, 120(38):21536–21542, September 2016.
    [26] M. Yano, M. Endo, Y. Hasegawa, R. Okada, Y. Yamada, and M. Sasaki. Wellordered
    monolayers of alkali-doped coronene and picene: Molecular arrangements
    and electronic structures. The Journal of Chemical Physics, 141(3),
    July 2014.
    [27] Kaifeng Niu, Haiping Lin, Junjie Zhang, Haiming Zhang, Youyong Li, Qing
    Li, and Lifeng Chi. Mechanistic investigations of the au catalysed c–h bond
    activations in on-surface synthesis. Phys. Chem. Chem. Phys., 20:15901–
    15906, 2018.
    [28] Rafal Zuzak, Andrej Janˇcaˇr´ık, Andre Gourdon, Marek Szymonski, and Szymon
    Godlewski. On-surface synthesis with atomic hydrogen. ACS Nano,
    14(10):13316–13323, 2020. PMID: 32897690.
    [29] P. Redhead. Hydrogen in vacuum systems: An overview. 671:243–254, 07
    2003.
    [30] Dirk K¨uhne, Florian Klappenberger, R´eGis Decker, Uta Schlickum, Harald
    Brune, Svetlana Klyatskaya, Mario Ruben, and Johannes V. Barth.
    Self-assembly of nanoporous chiral networks with varying symmetry from
    sexiphenyl-dicarbonitrile on ag(111). The Journal of Physical Chemistry C,
    113(41):17851–17859, 2009.

    QR CODE