簡易檢索 / 詳目顯示

研究生: 蘇哲玄
Su, Che-Hsuan
論文名稱: 生物高分子材料之放大自發輻射性質研究
Study of Amplified Spontaneous Emission from DNA Biopolymers
指導教授: 洪毓玨
口試委員: 洪毓玨
李明昌
黃文堯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: DNA去氧核糖核酸放大自發輻射染料雷射
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 去氧核糖核酸(deoxyribonucleic acid,DNA)擁有特殊的結構和性質,已在生化、奈米科技方面有許多的應用。近年來DNA高分子也應用於光電領域,且其在自然界中含量豐富、對環境無害,是非常有潛力的材料。
    目前運用DNA高分子於發光應用上大多關注於DNA主體材料的挑選和染料的搭配,但用於改質DNA的界面活性劑其實對系統的效能也扮演著重要的角色。因此本研究嘗試以芳香族界面活性劑vinylbenzyltrimethylammonium chloride和benzyltrimethylammonium chloride改質之DNA作為主體材料,使用Rh6G(rhodamine 6G)作為染料,探討其自發放大輻射特性,並與目前大部分研究以脂肪族界面活性劑((hexadecyl)trimethylammonium chloride,CTMA)改質之DNA主體材料作比較。研究發現以芳香族界面活性劑改質的DNA材料擁有較極低的閾值(threshold),論文中討論了可能的機制,此特性可應用於有機染料雷射系統。
    此外,本論文第二部分也探究有機雷射於紅外光波段的應用,研究以4,8-dibromobenzo-[1,2-c;4,5-c’]bis[1,2,5]thiadiazole為核心,合成出全新的紅外光染料,被805 nm與1210 nm的光激發時,可放出1245 nm的紅外光,未來可運用於光通訊元件的製作。


    Deoxyribonucleic acid (DNA) has a unique helix structure and exhibits interesting material properties, which have found many applications in biochemistry and nanotechnology. Recently, DNA biopolymer has also been implemented in optoelectronics. As DNA is rich in nature and is an environmental-friendly material, research in DNA photonics has drawn much attention.
    Most research efforts have emphasized on manipulation of DNA host and dyes. However, the surfactant used to modify DNA also plays in important role in system performance. In this work, we use aromatic surfactants vinylbenzyltrimethylammonium chloride and benzyltrimethylammonium chloride to modify DNA doped withrhodamine 6G dye, and study the amplified spontaneous emission.The experiment results are compared to the commonly used lipid surfactant (hexadecyltrimethylammonium chloride)-based DNA biopolymer. It is found that the DNA biopolymer modified by aromatic surfactants exhibitslower threshold. The possiblemechanism is discussed and this property may be promising for the applications of organic dye laser.
    The second part of this thesis present the synthesis of an IR dye. We use 4,8-dibromobenzo-[1,2-c;4,5-c’]bis[1,2,5]thiadiazole as the core structure and synthesize a new organic infrared dye. The synthesized infrared dye emits 1245 nm lightwhen excited at805 nm and 1210 nm. This dye may bepotential to be employed in optical communication.

    目錄 表目錄 VII 圖目錄 VIII 第一章緒論與文獻回顧 1 1.1前言 1 1.2雷射發展與介紹 2 1.2.1雷射的發展 2 1.2.2雷射的原理 2 1.2.3雷射的要件 4 1.2.4三階系統和四階系統 5 1.2.5雷射材料光學性質參數 7 1.3有機雷射發展與介紹 8 1.3.1有機染料雷射的發展 8 1.3.2有機染料雷射的介紹 8 1.4 DNA材料發展與介紹 12 1.4.1 DNA分子架構 12 1.4.2 DNA做為材料的應用 14 1.4.3摻染料的DNA複合材料雷射應用 16 1.5 紅外光染料 19 1.6 研究動機 21 1.7論文架構 22 第二章實驗方法與量測 23 2.1 DNA複合雷射材料 23 2.1.1 DNA前處理 24 2.1.2 DNA改質 28 2.1.3 有機染料雷射材料鍍液配置與鍍膜 30 2.1.4 ASE測量系統 32 2.2 紅外光染料合成 36 2.2.1 染料分子設計 36 2.2.2 使用藥品 38 2.2.3 合成步驟 38 2.3 量測儀器介紹 41 第三章實驗結果與分析 45 3.1 DNA複合雷射材料的量測與分析 45 3.1.1 DNA-CTMA、DNA-BTMA、DNA-VBTMA高分子 45 3.1.2 DNA-CTMA、DNA-BTMA、DNA-VBTMA(已摻Rh6G) 49 3.1.3 ASE實驗測量 57 3.1.4實驗結果與討論 63 3.2 紅外光染料的量測與分析 68 3.2.1分子鑑定分析 68 3.2.2光譜分析 69 第四章結論與未來展望 74 參考文獻 76 表目錄 表3-1 DNA-CTMA、DNA-BTMA、DNA-VBTMA光學特性整理 63 圖目錄 圖1-1 吸收、自發輻射、受激輻射能階示意圖 3 圖1-2 雷射架構圖 5 圖1-3 三階雷射系統 6 圖1-4 四階雷射系統 6 圖1-5 有機雷射能階系統 11 圖1-6 核苷酸分子[11] 13 圖1-7 DNA雙股螺旋結構[12,13] 13 圖1-8 CTMA分子結構 15 圖1-9 DNA-CTMA分子結構[21] 15 圖1-10 DNA材料應用實例(OLED、OFET)[23,25] 16 圖1-11 染料分子與DNA的結合[31] 17 圖1-12 PMMA與DNA之放光效率比較[34] 18 圖1-14 IR-26之分子結構圖 20 圖1-15 IR-26之ASE量測圖[46] 20 圖2-1 超音波震盪機 24 圖2-2 超音波震盪實驗運作圖 25 圖2-3 電泳用洋菜膠凝固模 26 圖2-4 置入欲檢測的DNA樣品 26 圖2-5 電泳結果圖(白色的地方代表有DNA的,黑色的地方則無) 28 圖2-6 改質DNA用的三種界面活性劑 28 圖2-7 RHODAMINE 6G染料分子結構 30 圖2-8 量測光路架構示意圖 32 圖2-9 實際光路架構圖 33 圖2-10 THRESHOLD尋找例圖 33 圖2-11 VARIABLE-STRIPE-LENGTH TECHNIQUE 34 圖2-12 4,8-DIBROMOBENZO-[1,2-C;4,5-C’]BIS[1,2,5]THIADIAZOLE分子結構 36 圖2-13 文獻提出的紅外光染料 37 圖2-14 推電子材料 37 圖2-15 紅外光染料結構(設計) 37 圖2-16 推電子材料合成步驟一 38 圖2-17 推電子材料合成步驟二 39 圖2-18 紅外光染料合成反應式 40 圖2-19 實驗所使用的FTIR量測設備 41 圖2-20 實驗所使用的分子光譜儀LAMBDA 35 42 圖3-1 DNA-BTMA材料FTIR檢驗 46 圖3-2 DNA-VBTMA材料FTIR檢驗 46 圖3-3 DNA-BTMA材料吸收光譜檢驗 47 圖3-4 DNA複合材料的光穿透率 48 圖3-5摻染料的DNA複合材料可見光吸收光譜 49 圖3-6摻染料的DNA複合材料可見光吸收光譜與螢光光譜 50 圖3-7摻不同濃度染料的DNA複合材料的溶液態螢光強度圖 51 圖3-8 摻不同濃度染料的DNA複合材料的薄膜態螢光放光強度圖 52 圖3-9 樣品試片波導結構圖 53 圖3-10 由平面波導推出的臨界波長與厚度繪出的關係圖 55 圖3-11 DNA-CTMA的樣品在不同強度激發光源下的放光光譜圖 57 圖3-12 DNA-BTMA的樣品在不同強度激發光源下的放光光譜圖 58 圖3-13 DNA-VBTMA的樣品在不同強度激發光源下的放光光譜圖 58 圖3-14 半高寬與閾值回歸資料圖 60 圖3-15 GAIN量測與指數函數回歸 61 圖3-16 DNA-CTMA、DNA-BTMA、DNA-VBTMA的耐久度測試 62 圖3-17 文獻[57]之實驗數據圖 64 圖3-18文獻[58]之實驗數據圖 65 圖3-19 材料能階與能量轉移示意圖 66 圖3-20 上圖為IR-Y之質譜儀訊號,下圖為文獻中之分子質譜儀訊號 68 圖3-21 IR-Y之固態與溶液照片 69 圖3-22 IR-Y之可見光吸收光譜 70 圖3-23 IR-Y之紅外光吸收光譜 70 圖3-24 上圖為IR-Y之螢光光譜,下圖為文獻結構之螢光光譜 72 圖3-25 IR-Y之1245 NM紅外光暫態響應 73

    [1] Gould R. Gordon, “The LASER, Light Amplification by Stimulated Emission of Radiation,” In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June, p. 128 (1959).
    [2] Maiman T.H., “Stimulated Optical Radiation in Ruby,” Nature 187 (4736): 493–494 (1960).
    [3] I. D. W. Samuel, and G. A. Turnbull, “Organic Semiconductor Lasers,”Chem. Rev.107,1272-1295 (2007).
    [4]D. L. Stockman, W. R. Mallory, and F. K. Tittel “Stimulated Emission in Aromatic Organic Compounds,” Proc. IEEE 52, 318 (1964).
    [5]D. L. Stockman “Stimulated Emission Considerations in Fluorescent Organic Molecules,” Proc. ONR Conference on organic lasers, Cameron Station, Alexandria, USA (1964).
    [6] Schäfer, Fritz P. (Ed.), “Dye Lasers,” Springer-Verlag Berlin Heidelberg (1990).
    [7]G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond Fluorescence Studies of Xanthene Dyes,”J. Am.Chem. Soc.99:13, 4306-4311 (1977).
    [8] G.A. Reynolds and K.H. Drexhage, “New Coumarin Dyes With Rigidized Structure for Flashlamp-pumped Dye Lasers,” Optics Communications13, No. 3, 222-225 (1975).
    [9]R.F. Kubin and A.N. Fletcher,“Flourescence Quantum Yields of Some Rhodamine Dyes,”Journal of Luminescence27, 455-462 (1982).
    [10] J. D. Watson and F. H. C. Crick, “Molecular Structure of Nucleic Acids,” Nature 171, 737–738(1953).
    [11]http://zh.wikipedia.org/wiki/File:Nucleotides_zh.png
    [12]http://zh.wikipedia.org/wiki/File:DNA_chemical_structure_zh.png
    [13]http://www.zjzszx.cn/imagematerial/upload/sw/YDPORFTG2LG5E3AN.jpg
    [14] K. Aoi, A. Takasu, and M. Okada, “DNA-based Polymer Hybrids. Part I. Compatibility and Physical Properties of Poly(vinyl alcohol)/DNA Sodium Salt Blend ,” Polymer 41, 2847–2853 (2000).
    [15]C. Alemán, B. Teixeira-Dias, D. Zanuy, F. Estrany, E. Armelin, and L. J. del Valle, “A Comprehensive Study of The Interactions Between DNA and Poly(3,4-ethylenedioxythiophene),” Polymer 50, 1965–1974 (2009).
    [16]Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, and C. Mao, “Hierarchical Self-assembly of DNA into Symmetric Supramolecular Polyhedral,” Nature 452, 198–201 (2008).
    [17]W. J. Parak, T. Pellegrino, C. M. Micheel, D. Gerion, S. C. Williams, and P. Alivisatos, “Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis,” NanoLett. 3, 33–36 (2002).
    [18] J. Zhang, Y. Liu, Y. Ke, and H. Yan, “Periodic Square-like Gold Nanoparticle Arrays Template by Self-assembled 2D DNA Nanogrids on a Surface,” Nano Lett. 6, 248–251 (2006).
    [19] H. J. Kim, Y. Roh, S. K. Kim, and B. Hong, “Fabrication and characterization of DNA-templated conductive gold nanoparticle chains,” J. Appl. Phys. 105, 074302-1-4 (2009).
    [20]Yutaka Kawabe, Lili Wang, Suguru Horinouchi, and Naoya Ogata, “Amplified Spontaneous Emission from Fluorescent-Dye-Doped DNA-Surfactant Complex Films,” Adv. Material. 12, No. 17, 1281-1283 (2000).
    [21] Jung Eun Lee, Eui Doo Do, U. Ra Lee, Min Ju Cho, Kyung Hwan Kim, Jung-Il Jin, Dong Hee Shin,Suk-Ho Choi, Dong Hoon Choi, “Effect of Binding Mode on the Photoluminescence of CTMA–DNA Doped With
    (E)-2-(2-(4-(diethylamino)styryl)-4H-pyran-4-ylidene)malononitrile,” Polymer49, 5417-5423 (2008).
    [22]Lili Wang, Jonichi Yoshida, and Naoya Ogata, “Self-Assembled Supramolecular Films Derived fromMarine Deoxyribonucleic Acid (DNA)-CationicSurfactant Complexes: Large-Scale Preparation and Optical and Thermal Properties,” Chem. Mater.13, 1273-1281 (2001).
    [23] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced Emission Efficiency in Organic Light-emitting Diodes Using Deoxyribonucleic Acid Complex as an Electron Blocking Layer,” Appl. Phys.Lett. 88, 171109-1–3 (2006).
    [24] V. Kolachure and M. H.-C. Jin, “Fabrication of P3HT/PCBM Bulk Heterojuction Solar Cells with DNA Complex Layer,” Photovoltaic Specialists Conference, PVSC '08. 33rd IEEE, pp.1-5 (2008).
    [25] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer-Brezina, D. Bauerle, and N. S. Sariciftci, “Organic Field-effect Transistors and Memory Elements Using Deoxyribonucleic acid (DNA) Gate Dielectric,” Org. Electron. 8, 648–654 (2007).
    [26] G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, “Microwave Dielectric Properties of DNA Based Polymers Between 10 and 30 GHz,” IEEE Microwave Wireless Comp. Lett. 15, 232–234(2005).
    [27] Yu-Chueh Hung, Wei-Ting Hsu, Ting-Yu Lin, and Ljiljana Fruk, “Photoinduced Write-once Read-many-times Memory Device Based on DNA Biopolymer Nanocomposite,”Appl. Phys. Lett.99, 253301 (2011).
    [28] Y. Ner, J. G. Grote, J. A. Stuart, and G. A. Sotzing, “Enhanced Fluorescence in Electrospun Dye-doped DNA Nanofibers,” Soft Matter 4, 1448–1453 (2008).
    [29] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of Polymers and Marine-derived DNA in Optoelectronics,” J. Phys. Chem.B 108, 8584–8591 (2004).
    [30] A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic Acid-based Photochromic Material for Fast Dynamic Holography,” Appl. Phys. Lett.91, 041118-1–3 (2007).
    [31]Bruce A. Armitage (Ed.) “Cyanine Dye–DNA Interactions: Intercalation,Groove Binding, and Aggregation,” Springer-Verlag Berlin Heidelberg (2005).
    [32] Yogesh Ner, Daminda Navarathne, Dariusz M. Niedzwiedzki, James G. Grote, Andrey V. Dobrynin, Harry A. Frank, and Gregory A. Sotzing, “Stabilization of Fluorophore in DNA Thin Films,” Appl. Phys.Lett.95, 263701 (2009).
    [33] Jaroslaw Mysliwiec, Lech Sznitko, Anna Sobolewska, Stanislaw Bartkiewicz, and Andrzej Miniewicz, “Lasing Effect in a Hybrid Dye-doped Biopolymer and Photochromic Polymer System,” Appl. Phys.Lett.96, 141106 (2010).
    [34] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and Lasing From Deoxyribonucleic acid (DNA) Thin Films Doped With Sulforhodamine,” Applied Optics46, No. 9, 1507-1513 (2007).
    [35]J. Mysliwiec, L. Sznitko, A. Miniewicz, F. Kajzar,and B. Sahraoui, “Study of The Amplified Spontaneous Emission in a Dye-doped biopolymer-based material,” J. Phys. D: Appl. Phys.42, 085101 (2009).
    [36] Nobuaki Kitazawa, S. Miyagawa, K. Date,W. Aroonjaeng, M. Aono, and Y. Watanabe, “Optical Properties of Dye-doped Deoxyribonucleic Acid Films,” J Mater Sci44,4999-5003 (2009).
    [37] Mayuko Honda, Naoya Nakai, Makoto Fukuda, and Yutaka Kawabe, “Optical Amplification and Laser Action in Cyanine Dyes Doped in DNA Complex,” Proc. of SPIE6646, 664609-1 (2007).
    [38] Jaroslaw Mysliwiec, Lech Sznitko, Stanislaw Bartkiewicz, Andrzej Miniewicz, Zacaria Essaidi, Francois Kajzar, and Bouchta Sahraoui, “Amplified Spontaneous Emission in The Spiropyran-biopolymer Based System,” Appl. Phys.Lett.94, 241106 (2009).
    [39] H. You, H. Spaeth, V. N. L. Linhard, and A. J. Steckl, “Role of Surfactants in the Interaction of Dye Molecules in Natural DNA Polymers,” Langmuir25(19), 11698–11702 (2009).
    [40]Jürgen Fabian, “Near-Infrared Absorbing Dyes,”Chem. Rev.92, 1197-1226 (1992).
    [41]D. P. Benfey, D. C. Brown, S. J. Davis, L. G. Piper, and R. F. Foutter, “Diode-pumped Dye Laser Analysis and Design,”Applied Optics31, No. 33, 7034-7041 (1992).
    [42]P. Prosposito, M. Casalboni, F. De Matteis And A. Quatela, “IR-Luminescent Molecules in Hybrid Materials,”J. Sol-Gel Sci. Technol.26, 909–913 (2003).
    [43]M. Casalboni, F. De Matteis, P. Prosposito, A. Quatela, F. Sarcinelli, “Fluorescence Efficiency of Four Infrared Polymethine Dyes,”Chem. Phys. Lett.373, 372-378 (2003).
    [44]Gang Qian, Ze Zhong, Min Luo, Dengbin Yu, Zhiqiang Zhang, Zhi Yuan Wang, and Dongge Ma, “Simple and Efficient Near-Infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission Above 1000nm,”Adv. Mater.21, 111–116 (2009).
    [45]M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann,“1.3 μm Light Amplification in Dye-doped Hybrid Sol-gel Channel Waveguides,”Appl. Phys. Lett.83, No. 3 (2003).
    [46] K. Oe, T. Morishita, K. Yamashita, and H. Yanagi, “1.3 μm Solid-state Dye-doped Plastic Waveguide Laser,”ECOC2010, 19-23 September, Torino, Italy, P2.02 (2010).
    [47] K.L. Shaklee, and R. F. Leheny, “Direct Determination of Optical Gain in Semiconductor Crystals,” Appl. Phys.Lett.18, 11 (1971).
    [48] Anup Thomas, K. Bhanuprakash, and K.M.M. Krishna Prasad, “Near infrared absorbing benzobis(thiadiazole) derivatives: computational studies point to biradical nature of the ground states,” J. Phys. Org. Chem.10.1002/poc.1845(2011).
    [49] Yun-Xing Yan, Xu-Tang Tao, Yuan-Hong Sun, Chuan-Kui Wang, Gui-Bao Xu, Jia-Xiang Yang, Yan Ren, Xian Zhao, Yong-Zhong Wu, Xiao-Qiang Yu, and Min-Hua Jiang, “Synthesis and nonlinear optical properties of novel multibranched two-photon polymerization initiators,” J. Mater. Chem.14, 2995-3000 (2004).
    [50] Daisuke Yokoyama, Masato Moriwake, and Chihaya Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys.103, 123104 (2008).
    [51] Tae-Woo Lee, O Ok Park, Dong Hoon Choi, Hyun Nam Cho , and Young Chul Kim, “Low-threshold blue amplified spontaneous emission in a statistical copolymer and its blend,” Appl. Phys. Lett.81, No. 3, 424-426 (2002).
    [52]Graham Hungerford, Klaus Suhling, João A. Ferreira,“Comparison of The Fluorescence Behaviour of Rhodamine 6G in Bulk and Thin Film Tetraethylorthosilicate Derived Sol-gel Matrices,”J. Photochem. Photobiol. A, 129, 71-80 (1999).
    [53] J. Reynisson, G. B. Schuster, S. B. Howerton, L. D. Williams, R. N. Barnett, C. L. Cleveland, U. Landman, N. Harrit, and J. B. Chaires, “Intercalation of Trioxatriangulenium Ion in DNA: Binding, Electron Transfer, X-ray Crystallography, and Electronic Structure,” J. Am. Chem. Soc.125,2072-2083 (2003).
    [54] N. Fletcher, “Laser Dye Stability,”Appl. Phys.22, 227-231 (1980).
    [55] E.J. Schimitschek, J.A. Trias, P.R. Hammond, and R.L. Atkins, “Laser Performance and Stability of Fluorinated Coumarin Dyes,”Optics Communications11, 352-355 (1974).
    [56] Ji-Hun Kim, Chan-Joo Yim, and Heon-Ju Lee, “Lifetime Improvement of a LDS698 Solid Dye Laser by Doping with PETA,”Journal of the Korean Physical Society51, No. 6, 1909-1914 (2007).
    [57]K. Yamashita, T. Kuro, and K. Oe, “Low Threshold Amplified Spontaneous Emission from Near-infrared Dye-doped Polymeric Waveguide,”Appl. Phys. Lett.88, 241110 (2006).
    [58]R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, and A. J. Heegera, “Low-threshold Amplified Spontaneous Emission in Blends of Conjugated Polymers,”Appl. Phys. Lett.73, 3492 (1998).
    [59] B. Nithyaja, H. Misha, P. Radhakrishnan, and V. P. N. Nampoori, “Effect of deoxyribonucleic acid on nonlinear optical properties of Rhodamine 6G-polyvinyl alcohol solution,” J. Appl. Phys.109, 023110 (2011).
    [60] P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in rhodamine 6G,” Pramana, J. Phys.28, 59 (1987).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE