簡易檢索 / 詳目顯示

研究生: 王勝弘
Mason Wang
論文名稱: 高介電係數閘極電晶體與電容之氧化層電荷與界面陷阱量測研究
Measurement of Oxide Charge and Interface Trap for High-k gated MOSFET’s and Cap’s
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 155
中文關鍵詞: 電荷汲引技術邊緣電荷能量分佈超薄氧化層側向分佈界面陷阱
外文關鍵詞: charge pumping, border traps, energy distribution, ultra thin oxide, lateral profile, interface traps
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    在元件閘極氧化層厚度快速縮小的趨勢下,氧化層厚度薄至25Å以下時元件會因為直接穿遂效應而產生很大的閘極漏電流。因此,尋找高介電係數(High-k)閘極介電層材料以替代原先二氧化矽介電層,是當今非常重要的一個課題。然而在材料替換的過程中,所多不可預期的問題開始產生如電荷捕獲(charge traping),起使電壓(threshold voltage)飄移,載子遷移率(mobility)的下降等,因此應用在高介電係數閘極介電層元件的可靠度分析因應而生。
    本論文我們選擇利用電荷汲引量測技術為架構發展出幾套可以觀察High-k材料使用後所造成的影響:chapter 3.能隙中不同能量的界面陷阱密度分佈量測,chapter 4.邊緣界面陷阱密度縱向深度分佈量測,利用這樣的量測可以解析出本身材料特性或是製程技術變異所引發的電特性改變原因。本研究的最後我們再提兩個電荷汲引量測技術應用在較新進的二氧化矽電晶體上的可靠度分析:chapter 5.1超薄氧化層電晶體界面陷阱密度量測,chapter 5.2側向氧化層缺陷分佈萃取技術,利用功能強大的電荷汲引技術,我們可以輕易的從量測到的電荷汲引曲線獲得所要結果,且不需要繁雜的數值模擬就可求得先進電晶體元件的界面陷阱密度大小及分佈,利用這樣的方式可以做為我們日後在判斷製程好壞的依據。


    第一章 序論 ________________________________________________________________________ 1.1 研究動機......................................1 1.2 高介電係數材料的選擇.........................2 1.3 高介電常數鉿氧氮化物(HfON)介電層...........3 1.4 實用的量測工具-電荷汲引技術.................3 1.5 研究概要…….................................4 第二章 金氧半電晶體元件量測損傷技術 ________________________________________________ 2.1 簡述介面陷阱密度及氧化電荷密度.................6 2.2 電荷分離量測法(charge separation)...........10 2.3 閘極衍生汲極漏電流量測 (Gate-Induced-Drain-Leakage Current Measurement)..13 2.4 矽基底撞擊游離電流量測 (Substrate-Impact-Ionization Current Measurement).15 2.5 電荷汲引技術..................................17 2.5.1 電荷汲引的方式及原理 ........................17 2.5.2 電荷汲引電流量測裝置及設定...................20 2.5.3 電荷汲引方法量測介面陷阱補抓範圍.............24 2.6 結論........................................26 第三章 高介電係數閘極介電層電晶體與電容界面陷阱密度對應能量分佈量測技術_____________ 3.1 前言介紹與量測程序.............................29 3.2高介電係數閘極介電層電晶體界面陷阱密度對應能量分佈量測技術………….........31 3.2.1 量測裝置及設定..............................31 3.2.2 量測原理 ...................................40 3.2.3 量測結果與結論..............................47 3.3高介電係數閘極介電層電容界面陷阱密度對應能量分佈量測技術.................................................48 3.3.1 傳統量測方法的介紹..........................49 3.3.2 先前方法的改良與新方法的產生.................50 3.3.3 量測裝置與設定...............................58 3.3.4 SiO2與HfO2電容的量測與驗證….................59 3.3.5 量測技術在不同製程條件上的應用...............63 3.4結論............................................64 第四章 高介電係數閘極介電層電容邊緣介面陷阱密度縱向深度分佈萃取技術_________________ 4.1 前言介紹與量測程序............................68 4.2 量測元件與裝置設定..........................72 4.3 量測技術原理................................74 4.4 量測計算與結果................................80 4.5 能隙中不同能量的界面陷阱及邊緣陷阱密度分佈....84 4.6 結論..........................................89 第五章 電荷汲引技術應用在先進金氧半電晶體量測_______________________________________ 5.1 超薄氧化層電晶體運用電荷汲引進行缺陷密度量測...91 5.1.2舊方法的改良及實驗程序.................91 5.1.3新發現-高低頻率與訊號雜訊比的關係.....95 5.1.4量測方法的延伸及應用...................99 5.1.5 結論.................................105 5.2 側向氧化層缺陷分布萃取技術....................108 5.2.1早期方法與新方法的原理與程序 ................108 5.2.2實驗關鍵-氧化層電荷的中和...................116 5.2.3量測方法的延伸及應用.........................123 5.2.4 結論........................................124 5.3 利用一般電性作可靠度分析之驗證................130 5.3.1 一般電特性的可靠度分析量測.................130 5.3.5 結論與驗證.................................143 5.4 結論....................................145 第六章 結論與建議 __________________________________________________________________ 6.1 結論.........................................146 6.2 未來工作與建議...............................148 參考文獻__________________________________________149

    參考文獻
    [1] J. J. O’Dwyer, ”The Theory of Electrical Conduction and Breakdown in Solid Dielectrics”, Clarendon Press, 1973.
    [2] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” Journal of Applied Physics, January 1969, p.278.
    [3] S. Tam, P. K. Ko, and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s,” IEEE Transaction on Electron Devices, Vol.31, September 1984, p.1116.
    [4] N. Tsuji, N. Ajika, K. Yuzuriha, Y. Kunori, M. Hatanaka, and H. Miyoshi, ”New erase scheme for DINOR Flash Memory Enhancing Erase/Write Cycling Endurance Characetristics,” Technical Digest of IEDM, 1994, p.53.
    [5] T. P. Ma and P. V. Dressendorfer, “Ionizing Radiation Effects in MOS Devices and Circuits,” John Wiley & Sons,1989.
    [6] E. H. Nicollian and J. R. Brews, “MOS Physics and Technology,” John Wiley & Sons, 1982.
    [7] J. J. O’Dwyer, ”The Theory of Electrical Conduction and Breakdown in Solid Dielectrics”, Clarendon Press, 1973.
    [8] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” Journal of Applied Physics, January 1969, p.278.
    [9] S. Tam, P. K. Ko, and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s,” IEEE Transaction on Electron Devices, Vol.31, September 1984, p.1116.
    [10] N. Tsuji, N. Ajika, K. Yuzuriha, Y. Kunori, M. Hatanaka, and H. Miyoshi, ”New erase scheme for DINOR Flash Memory Enhancing Erase/Write Cycling Endurance Characetristics,” Technical Digest of IEDM, 1994, p.53.
    [11] T. P. Ma and P. V. Dressendorfer, “Ionizing Radiation Effects in MOS Devices and Circuits,” John Wiley & Sons,1989.
    [12] P. J. McWhorter, P. S. Winokur, “Simple Technique for Separating the Effects of Interface Traps and Trapped Oxide Charge in Metal-Oxide-Semiconductor Transistor,” Applied Physics Letters, January 1986, p.133.
    [13] Dieter K. Schroder, “Semiconductor Material and Devices Characterization,” John Wiley & Sons,1998.
    [14] K. T. San, and T. P. Ma, ”Determination of Trapped Oxide Charge in Flash EPROM’s and MOSFET’s with Thin Oxides,” IEEE Electron Device Letters, Vol.13, August 1992, p.439.
    [15] W. Weber, M. Brox, R. Thewes, and N.S. Saks, “Hot-hole-induced negative oxide charges in n-MOSFET’s,” IEEE Transactions on Electron Devices, Vol.42, August 1995, p.1473.
    [16] J. S. Bruglar and P. G. A. Jaspers, “Charge Pumping in MOS Devices,” IEEE Transactions on Electron Devices, Vol.16, 1969, p.297.
    [17] G. Groeseneken, H. E. Maes, N. Bertran, and R. F. De Keersmaecker, ”A Reliable Approach to Charge-Pumping Measurements in MOS Transistors,” IEEE Transactions on Electron Devices, Vol.31, 1984, p.42.
    [18] W. Chen, A. Balasinski, and T. P. Ma ,”Lateral profiling of oxide charge and interface traps near MOSFET junction,” IEEE Transactions on Electron Devices, Vol.40, January 1993, p.187.
    [19] W. Chen, A. Balasinski, and T. P. Ma ,”Evolution of Capture Cross-section of Radiation-Induced Interface Traps,” IEEE Transactions on Nuclear Science, Vol.39, NO.6,Dec 1992.
    [20] K. Torii, Y. Shimamoto, S. Saito, O. Tonomura, M. Hiratani, Y. Manabe, M. Caymax, and J.W. Maes, “The mechanism of mobility degradation in
    MISFETs with Al O gate dielectric,” in Symp. VLSI Tech. Dig., 2002,
    pp. 188–189.
    [21] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron
    mobility in Si inversion layers in metal–oxide–semiconductor systems
    with high-_ insulator: The role of remote phonon scattering,” J. Appl.
    Phys., vol. 90, no. 9, pp. 4587–4608, 2001.
    [22] E. P. Gusev, D. A. Buchanan, A. Kumar, D. DiMaria, S. Guha, A. Callegari,
    S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk,
    H. Okorn-Schmidt, C.D’Emic, P.Kozlowski, K. Chan, N. Bojarczuk,
    and L.-A. Ragnarsson, “Ultrathin high-_ gate stacks for advanced
    CMOS devices,” in IEDM Tech. Dig., 2001, pp. 451–454.
    [23] W. J. Zhu, T. P. Ma, S. Zafer, and T. Tamagawa, “Charge trapping
    in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, pp.
    597–599, Dec. 2002.
    [24] A. Kerber, E. Cartier, L. A. Ragnarsson, M. Rosmeulen, L. Pantisano,
    R. Degraeve, Y. Kim, and G. Groeseneken, “Direct measurement of the
    inversion charge in MOSFETs: Application to mobility extraction in alternative
    gate dielectrics,” in Symp. VLSI Tech. Dig., 2003, pp. 159–160.
    [25] J.-P. Han, E. M. Vogel, E. P. Gusev, C. D’Emic, C. A. Richter, D. W.
    Heh, and J. S. Suehle, “Energy distribution of interface traps in high-_
    gated MOSFETs,” in Symp. VLSI Tech. Dig., 2003, pp. 161–162.
    [26] G. V. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker,
    “A reliable approach to charge pumping measurements in MOS transistors,”
    IEEE Trans. Electron Devices, vol. ED-31, pp. 42–53, Jan. 1984.
    [27] P. Heremans, J. Witters, G. V. Groeseneken, and H. E. Maes, “Analysis
    of the charge pumping technique and its application for the evaluation
    of MOSFET degradation,” IEEE Trans. Electron Devices, vol. 36, pp.
    1318–1335, Oct. 1989.
    [28] C. E. Weintraub, E. M. Vogel, J. R. Hauser, N. Yang, and V. Misra,
    “Study of low-frequency charge pumping on thin stated dielectrics,”
    IEEE Trans. Electron Devices, vol. 48, pp. 2754–2762, Nov. 2001.
    [29]B Guillaumot et al, IEEE-IEDM Tech. Dig. 355, 2002
    [30]G. Groeseneken et al. IEEE Trans. Electr. Dev. 31, 42, 1984
    [31]G-W. Lee et al. Appl. Phys. Lett. 81(11), 2050, 2002
    [32]E.P. Gusev, et al. IEEE-IEDM Tech. Dig. 451, 2000
    [33]E.M.Vogel et al. IEEE Trans. Electr. Dev. 47, 601, 2000
    [34] B. Guillaumot, X. Garros, F. Lime, K. Oshima, B. Tavel, J. A.
    Chroboezek, P. Masson, R. Truche, A. M. Papon, F. Martin, J. F.
    Damlencourt, S. Maitrejean, M. Rivoire, C. Leroux, S. Cristoloveanu,
    G. Ghibaudo, J. L. Autran, T. Skotnicki, and S. Deleonibus, “75 nm
    damascene metal gate and high-_ integration for advanced CMOS
    devices,” in IEDM Tech. Dig., 2002, pp. 355–358.
    [35] S. B. Samavedam, L. B. La, J. Smith, S. Dakshina-Murphy, E. Luckowski,
    J. Schaeffer, M. Zavala, R. Martin, V. Dhandapani, D. Triyoso,
    H. H. Tseng, P. J. Tobin, D. C. Gilmer, C. Hobbs, W. J. Taylor, J. M.
    Grant, R. I. Hedge, J. Mogab, C. Thomas, P. Abramowitz, M. Moosa,
    J. Conner, J. Jiang, V. Arunachalam, M. Sadd, B.-Y. Nguyen, and B.
    White, “Dual-Mmetal gate CMOS with HfO2 gate dielectric,” in IEDM
    Tech. Dig., 2002, pp. 3–6.
    [36] E. M. Vogel, W. K. Henson, C. A. Richter, and J. S. Suehle, “Limitation
    of conductance to the measurement of the interface state density of
    MOS capacitors with tunneling gate dielectrics,” IEEE Trans. Electron
    Devices, vol. 47, pp. 601–608, May 2000.
    [37] E. H. Nicollian and A. Goetzberger, Appl. Phys. Lett. 7, 216 ~1965!.
    [38] P. V. Grey and D. M. Brown, Appl. Phys. Lett. 8, 31 ~1966!.
    [39] L. M. Terman, Solid-State Electron. 5, 285 ~1962!.
    [40] C. N. Berglund, IEEE Trans. Electron Devices 13, 701 ~1966!.
    [41] M. Kuhn, Solid-State Electron. 13, 873 ~1970!.
    [42] A. Koukab, A. Bath, and E. Losson, Solid-State Electron. 41, 635 ~1997!.
    [43] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. DeKeersmaecker,
    IEEE Trans. Electron Devices 31, 42 ~1984!.
    [44] M. Koyanagi, Y. Baba, K. Hata, I. W. Wei, A. G. Lewis, M. Fuse, and R.
    Bruce, IEEE Electron Device Lett. 13, 152 ~1992!.
    [45] M. Giannini, A. Pacelli, A. L. Lacaita, and L. M. Perron, IEEE Electron
    Device Lett. 21, 405 ~2000!.
    [46] Quazi Deen Mohd Khosru, Anri Nakajima, Takashi Yoshimoto, and Shin Yokoyama ”Reliable extraction of the energy distribution of SiÕSiO2 interface traps in ultrathin metal–oxide–semiconductor structures” APPLIED PHYSICS LETTERS VOLUME 80, NUMBER 21 27 MAY 2002
    [47] R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation
    of near-interface oxide traps with the charge-pumping technique,”
    IEEE Electron Device Lett., vol. 13, pp. 627–629, Dec. 1992.
    [18] R. E. Paulsen and M. H. White, “Theory and application of charge
    pumping for the characterization of Si-SiO2 interface and near-interface
    oxide traps,” IEEE Trans. Electron Devices, vol. 41, pp. 1213–1216,
    July 1994.
    [19] B. Djezzar, “On the correlation between radiation-induced oxide- and
    border-trap effects in the gate-oxide nMOSFET’s,” Microelectron. Reliab.,
    vol. 42, pp. 1865–1874, 2002.
    [50] , “Electrical characterization of radiation-induced border-trap in
    NMOS transistor using multi-frequency charge pumping technique,” in
    Algerian Conf. Microelectronics (ACM’02), vol. 1, Oct. 13–15, 2002,
    pp. 7–12.
    [51] , “What are these border traps: introduced by radiation and seen
    by charge pumping technique?,” in Proc. 2001 IEEE Nuclear Science
    Symp. (NSS’01), vol. 1, San Diego, CA, Nov. 4–10, 2001, pp. 234–239.
    [52] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keermaecker, “A
    reliable approach to charge pumping measurement in MOS transistors,”
    IEEE Trans. Electron Devices, vol. ED-31, pp. 42–53, Jan. 1984.
    [53] G. Groeseneken and H. E. Maes, “Basics and applications of charge
    pumping in submicron MOSFET’s,” in Proc. 21st Int. Conf. Microelectronics,
    MIEL’97, vol. 2, Sept. 14–17, 1997, pp. 581–589.
    [54] P. Heremans, J. Witters, G. Groeseneken, and H. E. Maes, “Analysis of
    the charge pumping technique and its application for the evaluation of
    MOSFET degradation,” IEEE Tran. Electron Devices, vol. ED-36, pp.
    1318–1335, July 1989.
    [55] N. S. Saks and M. G. Ancona, “Determination of interface trap capture
    cross section using three-level charge pumping,” IEEE Electron Device
    Lett., vol. 11, pp. 339–341, Aug. 1990.
    [56] J. E. Chung and R. S. Muller, “The development and application of
    a Si-SiO2 interface-trap measurement system based on the staircase
    charge-pumping technique,” Solid State Electron., vol. 32, pp. 867–882,
    [57] J. P. Han, E. M. Vogel, E. P. Gusev, C. D’Emic, C. A. Richter, D. W. Heh, J. S. Suehle, “Energy Distribution of Interface Traps in High-K Gated MOSFETs,” in Symp. VLSI Tech. Dig., 2003, pp. 161-162.
    [58] Quazi Deen Mohd Khosru, Anri Nakajima, Takashi Yoshimoto, and Shin Yokoyama, “Reliable extraction of the energy distribution of Si/SiO2 interface traps in ultrathin metal-oxide-semiconductor structures,” Appl. Phys. Lett., vol. 80, pp. 3952-3954, May 2002.
    [59] A. Kerber et al., “Origin of the Threshold Voltage Instability in SiO2/HfO2 Dual Layer Gate Dielectrics,” IEEE Electron Device Let., vol 24, pp. 87-89, 2003.
    [60] D. Bauza and Y. Maneglia, “In-depth exploration of Si-SiO2 interface
    traps in MOS transistors using the charge pumping technique,” IEEE
    Trans. Electron Devices, vol. 44, pp. 2262–2266, Dec. 1997.
    [61] H. H. Li, Y. L. Chu, and C. Y.Wu, “A novel charge pumping method for
    extracting the lateral distributions of interface traps and effective oxide
    charge densities in MOSFET devices,” IEEE Trans. Electron Devices,
    vol. 44, pp. 782–791, May 1997.
    [62]Daniel Bauza and Yves Maneglia, “In-Depth Exploration of Si-SiO2 Interface Traps in MOS Transistors Using the Charge Pumping Technique,” IEEE Trans. Electron Devices, vol. 44, pp. 2262-2266, Nov. 1997.
    [63] S. M. Sze, Physics of Semiconductor Devices. New York:Wiley, 1981.
    [64] P. J. McWhorter and P. S. Winokur, “Simple technique for separating
    the effects of interface traps and trapped oxide charge in metal-oxidesemiconductor transistors,” Appl. Phys. Lett., vol. 48, pp. 133–135, Jan. 1986.
    [65] P. S.Winokur, J. R. Schwank, P. J. McWhorter, P. V. Dressendorfer, and
    D. C. Turpin, “Correlating the radiation response of MOS capacitors and
    transistors,” IEEE Trans. Nucl. Sci., vol. 31, pp. 1453–1460, Dec. 1984.
    [66] D. M. Fleetwood, M. R. Shaneyfelt, J. R. Schwank, P. S.Winokur, and F.
    W. Sexton, “Theory and application of dual-transistor charge separation
    analysis,” IEEE Trans. Nucl. Sci., vol. 36, pp. 1816–1824, Dec. 1989.
    1989.
    [67] B. Djezzar, S. Oussalah, and A. Smatti, “A new oxide-trap based on
    charge pumping (OTCP) extraction method for irradiated MOSFET devices:
    part I (high frequencies),” IEEE Trans. Nucl. Sci., vol. 51, pp.
    1724–1731, Aug. 2004.
    [68] J. L. Autran, C. Chabrerie, P. Paillet, O. Flament, J. L. Leray, and J. C.
    Boudenot, “Radiation-induced interface traps in hardened MOS transistors:
    an improved charge pumping study,” IEEE Trans. Nucl. Sci., vol. 43, pp. 2547–2557, Dec. 1996.
    [69] T. R. Oldham, Ionizing Radiation Effects in MOS Oxides, Singapore:
    World Scientific, 1999.
    [70] Boualem Diezzar, Slimance Qussalah, and Abderrazak Smatti, “A New Oxide-Trap Based on Charge-Pumping (OTCP) Extraction Method for Irradiated MOSFET Device:Part II (Low Frequencies),” IEEE Trans. Nucl. Sci., vol. 51, pp. 1732-1736, Aug. 2004.
    [71] Xuguang Wang, Jun Liu, Feng Zhu, Naoki Yamada, and Dim-Lee Kwong, “A Simple Approach to Fabrication of High-Quality HfSiON Gate Dielectrics With Improved nMOSFET Performances,” IEEE Trans. Electron Devices, vol. 51, pp. 1798-1804, Nov. 2004.
    [72] C.-H. Choi et al.,Symposium on VLSI Tech., pp.63-64, 1999
    [73] K. Yang et.,Symposium on VLSI Tech., pp.77-78, 1999.
    [74] Lewis M. Terman, Solid-State Electronics, Vol. 5(5), p.285-299, 1962.
    [75] S.S. Chung et al., Proc. SSDM, pp.841-843,1993
    [76] S.S. Chung et al., IEEE T-ED, vol. 46, pp.1371-1377,1999
    [77] P. Heremans et al., IEEE T-ED, Vol.36, pp.1318-1335,,1989.
    [78] C. Chen et al., IEEE T-ED, Vol.45, No.2, pp.512-519,1998.
    [79] P. Masson et al., IEEE EDL, Vol.20, No.2, pp.92-94,1999.
    [80] Steve S. Chung et al., “Anovel and direct Determination of the interface traps in Sub-100nm CMOS Devices,” Symposium on VLSI technology digest of technical papers, 2002
    [81] W. Chen, A. Balasinski, and T. P. Ma ,”Lateral profiling of oxide charge and interface traps near MOSFET junction,” IEEE Transactions on Electron Devices, Vol.40, January 1993, p.187.
    [82] M. G. Ancona, N.S. Saks, and D. McCarthy, “Lateral distribution of hot-carrier-induced interface traps in MOSFET’s,”IEEE Transactions on Electron Devices, Vol.35, December 1988, p.2221.
    [83] R. G. H. Lee et al, “New method for characterizing the spatial distributions of interface states and oxide-trapped charges in LDD n-MOSFET’s,” IEEE Transactions on Electron Devices, Vol.43, January 1996, p.81
    [84] M. Tsuchiaki, H. Hara, T. Morimoto, and H. Iwai, “A new charge pumping method for determining the spatial distribution of hot-carrier-induced fixed charge in p-MOSFET’s,” in IEEE Transactions on Electron Devices, Vol.40, October 1993, p.1768.
    [85] K. T. San, C. Kaya, and T. P. Ma, “Effects of Erase Source Bias on Flash EPROM Device Reliability,” IEEE Transactions on Electron Devices, Vol.42, January 1995, p150.
    [86] C. Chen, T. P. Ma, “Direct Lateral Profiling of Hot-Carrier-Induced Oxide Charge and Interface Traps in Thin Gate MOSFET’s,” IEEE Transactions Electron Devices, Vol.45, February 1998, p.512.
    [87] Ashot Melik-Martirosian and T. P. Ma, “Improved Charge-Pumping
    Method for Lateral Profiling of Interface Traps and Oxide Charge in MOSFET Devices,” IEDM 99, page : 93-96
    [88]盧俊源,“金氧半電晶體氧化層電荷與界面陷阱量測研究”,國立清華大學碩士論文

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE