簡易檢索 / 詳目顯示

研究生: 魏紹倫
論文名稱: 光刻模造光干涉式生物感測晶片之研究
A Study on LIGA Fabrication of a Optical Interferometer Biochip
指導教授: 傅建中
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: UV-LIGA平面光干涉儀生物晶片精密熱壓田口實驗奈米金粒子
外文關鍵詞: UV-LIGA, Planar Mach-Zehnder Interferometer, Biochip, Hot-embossing, Taguchi methods, Gold nanoparticle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試建立UV-LIGA技術,配合相關高解析UV光刻與精密微電鑄製程,熱壓模造馬赫-任德光干涉儀(Mach-Zehnder Interferometer,MZI)平面光波導微結構,以進行可棄式、高靈敏度的塑膠光干涉式生物感測晶片之應用研究。

    研究結果顯示,配合即時脫模機構與田口實驗的熱壓參數優化,本研究可以成功熱壓出最高解析度為1μm,深寬比為6的精密壓克力(PMMA)平面光干涉儀結構。並配合PMMA之折射係數(1310nm下),本研究也成功藉由熱處理程序調變光波導核心材料(WGC)之折射率,以符合單模態傳輸的光波導設計需求。實際量測結果顯示,該模造MZI晶片有相不錯的導光效率(~5dB),且6小時內的導光強度變異量約在4%以內。實驗中更進一步以不同濃度的食鹽水評估MZI塑膠晶片的檢測靈敏度,初步結果顯示該晶片可檢測到10^-9g/ml的食鹽水濃度,亦即10^-11之折射率變化。

    此外,本研究也嚐試利用共軛(conjugated)奈米金粒子之生物分子,藉由金粒子與生物分子的明顯折射率差異,進ㄧ步提升MZI生物晶片的檢測靈敏度。實驗結果顯示,藉由奈米金粒子的耦合,成功地將SU-8製的MZI晶片的檢測靈敏度由原來的10^-12g/ml提升至10^-14g/ml。未來若同時結合熱壓MZI晶片與奈米金粒子技術,可提供低價、可棄式與高靈敏度的塑膠檢測晶片,將有助於疾病的早期檢測與防治。


    This study try using UV-LIGA technology, coupled with UV lithography and micro electroforming technique, to hot-emboss a high resolution and high aspect-ratio microstructure for a planar Mach-Zehnder Interferometer (MZI). The polymer MZI chip will be used as a portable, high
    sensitivity biochemical sensor.

    In cooperated with a real-time demolding mechanism, the experimental results showed that the MZI microstructure can be hot embossed in PMMA material with a minimum feature size of 1μm and an aspect ratio of 6 after processes optimization of the Taguchi methods. A composite material
    of WGC was then spin-coated in the molded PMMA microstructure as the core of the waveguide.
    The refractive index of the WGC material was modulated providing single mode transmission of the NIR light source. Optical measurement results showed that transmission efficiency of the molded MZI is good (~5 dB), and the deviation of the transmission intensity could be as low within 4%. The measurement results also indicate that the molded MZI chip can detect a concentration change of 10^-9g/ml of the sodium chloride solution, which corresponding to a refractive index
    change of 10^-11.

    In addition, the antibody-conjugated gold nanoparticles were tried to enhance the sensitivity of the MZI sensor since the refractive index difference is quite large between gold and bimolecular. By using the gold nanoparticles, the measurement results showed that the detection sensitivity of the SU-8 MZI chip can be improved from 10^-12g/ml to 10^-14g/ml. Once the molded MZI
    chip coupled with nanoparticle amplification, the low-cost, portable and high-sensitivity biosensing scheme will benefit the detection, prevention and curing of decease.

    中文摘要 …………………………………………………………… i 英文摘要 …………………………………………………………… ii 誌謝 ………………………………………………………………… iii 目錄 ………………………………………………………………… iv 圖目錄 ……………………………………………………………… vi 表目錄 ……………………………………………………………… ix 第一章 緒論 ……………………………………………………… 1 1.1 研究背景與動機 ……………………………………………… 1 1.2 研究目的 …………………………………………………… 4 第二章 MZI生物晶片設計概念 ………………………………… 5 2.1 光干涉式感測器原理 ……………………………………… 5 2.1.1 馬赫任德光學干涉儀 …………………………………… 5 2.1.2 光波導原理 ……………………………………………… 5 2.1.3 表面瞬逝波原理 ………………………………………… 7 2.1.4 MZI生物感測器原理 ……………………………………… 8 2.2 MZI光波導之設計 …………………………………………… 9 2.3 奈米金粒子之光學性質 …………………………………… 10 第三章 實驗步驟 ……………………………………………… 16 第四章 實驗結果與討論 ……………………………………… 28 4.1 製程結果與討論 …………………………………………… 28 4.1.1 電鑄模造製程 …………………………………………… 28 4.1.2 微熱壓壓印製程 ………………………………………… 29 4.1.3 光波導核心層材料與製程技術 ………………………… 32 4.2 MZI晶片實際量測結果與討論 …………………………… 33 4.2.1 模造MZI生物晶片檢測結果 …………………………… 33 4.2.2 SU-8 製的MZI生物晶片檢測結果 ……………………… 35 第五章 結論 …………………………………………………… 59 第六章 未來工作 ……………………………………………… 61 參考文獻 ………………………………………………………… 62

    [1] David Meadows,“Recent developments with biosening technology and applications in the pharmaceutical industry”,Advanced Durg Delivery Review 21 p.179-189
    (1996)
    [2] 毛彥傑、王維漢、陳來勝,”生物晶片市場與技術概況”,機械工業雜誌 Vol.267 (2005.6)
    [3] R.G. Heideman、R.P.H. Kooyman、J.Greve,Sensors and Actuators B10 p.209-217 (1993)
    [4] F. Brosinger、H. Freimuth、M. Lacher、W. Ehrfeld、E. Gedig、A. Katerkamp、F. Spener、K. Cammann,Sensors and Actuators B44 p.350-355 (1997)
    [5] S. Busse、V. Scheumann、B. Menges、S. Mittler,Biosensors and Biolectronics 17 p.704-710 (2002)
    [6] J. Hong、J.S. Choi、G. Han、J. K. Kang、C.M. Kim、T.S. Kim、 D.S. Yoon,” A Mach-Zehnder interferometer based on silicon oxides for biosensor applications”,Analytica Chimica Acta 573–574 p.97–103 (2006)
    [7] B Sepulveda1、J Sanchez del Rio、M Moreno、F J Blanco、K Mayora、C Dominguez and L M Lechuga,”Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices”,Institute of Physics Publishing p.561-566 (2006)
    [8] D. Esinenco、S.D. Psoma、M. Kusko、A. Schneider and R. Muller,”SU-8 Micro-Biosensor based on Mach-Zehnder Interferometer”, Rev.Adv.Mater.Sci 10 p.295-299 (2005)
    [9] N. Pelletier、B. Beche、N. Tahani、J. Zyss、L. Camberlein、E. Gaviot,” SU-8 waveguiding interferometric micro-sensor for gage pressure measurement”,Sensor
    and Actuators A 135 p.179-184 (2007)
    [10] 黃彥璋,”以UV-LIGA技術製作平面波導光干涉式感測器之研究”,國立交通大學機械工程研究所碩士論文 (2004.6)
    [11] B.H. Schneider、E.L. Dickinson、M.D Vach、J.V. Hoijer、L.V. Howard,”Optical chip immunoassay for hCG in human whole blood”,Biosensors&Bioelectronics 15 p.597-604 (2000)
    [12] Chad A. Mirkin,”Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks”,Inorg. Chem. Vol.39 p.2258-2272 (2000)
    [13] Paul Alivisators,“The use of nanocrystals in biological detection”,Nature Biotechnology Vol.22 p.47-52 (2004)
    [14] 林彥瑋、余怡德,物理雙月刊 vol.27-2 p.395-401 (2005.4)
    [15] Ranganath、TR. And S. Wang,IEEE, J. Quantum Electron. QE-13,290 (1977)
    [16] 孫慶成,”光電概論”,全華科技股份有限公司 (2001)
    [17] 金進興,”光電構裝用之有機光波導材料”,工業材料雜料,175期 (2001)
    [18] 易善穠…等,”光通訊原理與技術”,全華科技圖書股份有限公司 (2004)
    [19] Gilbert Boisde、Alan Harmer,”Chemical and Biochemical Sensing With Optical Fiber and Waveguides”,(1996)
    [20] W. Gopel、J. Hesse、J. N. Zemel,”Sensors:Chemical and Biochemical sensors I”,chap. 12,VCH Weinhein (1991)
    [21] M. Weisser、G. Tovar…”Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer”,Biosensors&Bioelectronics 14
    p.405-411 (1999)
    [22] K. L. Kelly、E. Coronado、L. L. Zhao、G. C. Schatz,”The Optical Properties of Metal Nanoparticles”,J. Phys. Chem. B vol.107 p.668-677 (2003)
    [23] J. J Storhoff、A. D Lucas、V. Garimella、Y Paul Bao&Uwe R Muller,”Homogenous detection of unamplified genomic DNA sequences based on colorimetric scatter of
    gold nanoparticle probes”Nature Biotechnology vol.22 p.883-887 (2004)
    [24] D. I. Stimpson、J. V. Hoijer、W. T. Hsieh…,“Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides”,Proc. Natl. Acad. Sci. USA vol.92 p.6379-6383 (1995)
    [25] A. Csaki、P. Kaplanek、R. Moller、W. Fritzsche,“The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement”,
    INSTITUTE OF PHYSICS PUBLISHING 14 p.1262-1268 (2003)
    [26] 鄭淑芳,”表面電漿共振感測器”,國立中正大學化學研究所博士論文 (2004)
    [27] K. Imura、T. Nagahara、H. Okamoto,”Charateristic near-field spectra of single gold nanoparticles”,Chemical Physics Letters 400 p.500-505 (2004)
    [28] G. Raschke、S. Kowarik et al.,”Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering”,NANO LETTERS Vol.3 no.7 p.935-938 (2003)
    [29] 李志宏,”精細微光波導熱壓成型複製度及品質比較”,國立雲林科技大學機械工程系碩士論文 (2004.6)
    [30] http://www.metricon.com/
    [31] 吳欲誌,”以混成玻璃材料製作之單模態埋藏式光波導”,國立中山大學光電工程研究所碩士論文 (2004.6)
    [32] 許朝凱,”以混成玻璃材料建立在矽基板之分光器”, 國立中山大學光電工程研究所碩士論文 (2005.6)
    [33] Ziyuan Cheng,Swee-Hin Teoh,Biomaterials 25 (2004) 1991–2001
    [34] U. Konig et al.,Colloids and Surfaces B.,Vol. 24, p 63 (2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE