簡易檢索 / 詳目顯示

研究生: 張家銘
Chang, Chia Ming
論文名稱: 高熱通量下延遲加熱控制對雙熱氣泡成長動力之相互影響
The Dynamic Interactions of Dual Thermal Bubbles with Delayed Heating Pulse under High Heat Flux
指導教授: 錢景常
Chieng, Ching Chang
曾繁根
Tseng, Fan Gang
口試委員: 楊宜達
莊昀儒
潘欽
饒達仁
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 99
中文關鍵詞: 微氣泡微氣泡的相互作用延遲時間能量轉移
外文關鍵詞: Micro bubble, Micro bubble interactions, Delay time, Energy transfer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究當中藉由控制延遲時間,來了解複雜的雙氣泡之間相互影響,其中的影響可由最大的氣泡體積、速度流場變化、氣泡壓力及有效的能量來討論。延遲時間DT=0μs時,兩個氣泡同時產生,同時也產生壓力波相互抑制對方的成長。延遲時間DT=2μs時,右邊氣泡剛成長時所產的壓力波影響左邊氣泡的成長,導致於左邊的氣泡慢於單一成長的氣泡,當左邊氣泡萎縮時造成一個沉流,促進右邊氣泡的成長。延遲時間DT=8μs時,左邊氣泡維持單一氣泡的狀況,沒有受到任何影響,當左邊氣泡產生rebound,造成右邊的氣泡偏離原本預期的單一氣泡的曲線。
    高熱通率的熱氣泡動態會所輸入的熱能所侷限,調整雙氣泡之間的延遲時間,讓氣泡之間的消長能有效率傳遞能量,從一顆氣泡傳遞到另一顆氣泡身上,此方式打破以往單一氣泡所能承載能量限制。實驗結果顯示若將兩氣泡的延遲時間設定在2μs及3μs之間,就能有效率的從一顆氣泡傳遞40%的能量轉移給另一顆氣泡。若是以整體能量來計算,雙氣泡系統所產生的能量會比兩倍的單一氣泡所產生的能量多20%。這樣的現象提供一個新的方式,能有效的轉移或集中能量給所需要的氣泡。


    In this study, delay times of explosive dual microbubbles are controlled precisely to understand the complex and dynamic phenomenon of dual bubbles interactions. The interactions have been characterized in terms of maximal bubble size, sink/source flow, bubble pressure, and useful work. For DT = 0 μs, dual bubbles are produced simultaneously,and the produced pressures inhibit the growth ofeach other. The sizes of those are slightly smaller than thatof a single bubble. For DT = 2 μs, the pressure generated from the second (right) bubble affects the growth of the first (left) bubble in the beginning and poses the first bubble growth slower than the single bubble. When the first (left) bubble starts to collapse, the surrounding flow field induces a sink flow to promote the growth of the second (right) bubble. As the first (left) bubble rebounds, the peak pressure produced by the rebound leads to a rapid collapse of the second (right) bubble. For DT = 8 μs, the first (right) bubble keeps following the history of the single bubble because there is no influence from the second(right) one. As the first bubble rebounds in the same condition, the volume history of the second bubble drops and deviates from the original track of the single bubble.
    The dynamics of a high heat flux thermal bubble is constrained by the thermal energy carried on the bubble surface right after the bubble formation because of thermal isolation of vapor. This paper proposes a way by assigning time delays between dual bubbles to effectively transfer energy from one bubble into the other, thus breaks energy limitation that one single bubble can usually carry. Experiment result has demonstrated that the useful work as large as 40% can be transferred from one bubble into the other for the ignition time delay set between 2 and 3 μs in a dual bubble system. At the same time, the total extractable useful work in a dual bubble system is 20% higher than twice that of a single bubble system with the same input heat energy. This phenomenon opens up a new way to transfer or concentrate energies from distributed energy sources with limit energy density into a much higher one for higher power application.

    目錄 誌謝 I 中文摘要 III 英文摘要 IV 附表目錄 VIII 附圖目錄 IX 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 4 第二章 文獻回顧 6 2.1 單一氣泡的型態與量測 6 2.1.1 連續加熱 7 2.1.2 脈衝加熱 14 2.1.3 量測技術 29 2.2 雙氣泡的相互影響 35 2.1.2 連續加熱 35 2.1.2 脈衝加熱 42 2.3 多氣泡的相互影響 49 2.3.1 連續加熱 49 2.3.2 脈衝加熱 51 2.3.3 脈衝壓力 53 2.4 氣泡的應用與發展 55 2.4.1 噴墨頭 55 2.4.2 光切換器 58 2.4.3 微幫浦 60 2.4.4 細胞篩選 62 第三章 實驗設備與方法 63 3.1 實驗晶片 63 3.1.1 晶片設計 63 3.1.2 晶片的製程步驟 65 3.2 實驗設備 68 3.2.1 流體可視化 68 3.2.2 微粒子影像流速儀系統 73 3.3 實驗設計 74 第四章 實驗結果與討論 76 4.1 單一氣泡 76 4.2 延遲時間的雙氣泡 81 4.3 無因次化最大氣泡體積與延遲時間 91 4.4 能量轉換與延遲時間 93 第五章 結論 95 參考文獻 96

    [1] 陳宏仁,“微機電系統的市場發展現況及未來趨勢,”奈米通訊19卷no.3第28頁
    [2] P. J. French, and A. G. R. Evans, “Piezoresistance in polysilicon and it’s applications to strain gauges,” Solid-State Electronics, vol. 32, no. 1, pp. 1-10, 1989.
    [3] N. Yazdi and K. Najafi, “An interface IC for a capacitive micro-g accelerometer,” IEEE int Solid-State Circuits Conference Digest of Technical Papers, pp. 132-133, 1999.
    [4] L. J. Hornbeck, “Active yoke hidden hinge digital micromirror device,” Patent 5,535,047, Texas Instruments, 1996.
    [5] N. J. Nielsen, “History of thinkjet printerhead development,” HP Journal, vol. 36, no. 5, pp. 4-10, 1985.
    [6] H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromechanical Systems, vol. 5, no. 4, pp. 231- 237, 1996.
    [7] T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip", Optics Letters, vol. 30, no. 19, pp. 2575-2577 , 2005.
    [8] C. Junseok, H. Kulah, and K. Najafi, “A monolithic three-axis micro-g micromachined silicon capacitive accelerometer,” J. Microelectromechanical Systems, vol. 14, pp. 235-242, 2005.
    [9] D. C. Abeysinghe et al, “A novel MEMS pressure sensor fabricated on an optical fiber”, IEEE Photonics Technology Letter, vol. 13, pp. 993-995, 2001.
    [10] P.R. Scheeper, B. Nordstrand, J.O. Gulløv, B. Liu, T. Clausen, L. Midjord, T. Storgaard-Larsen, “A new measurement microphone based on MEMS technology”, J. Microelectromechanical System,vol. 12,pp. 880-891, 2003.
    [11] A. Witvrouw, “CMOS-MEMS integration today and tomorrow,” Scripta Materialia, vol. 59, pp. 945-949, 2008.
    [12] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chemical Society Reviews, vol. 39, no. 3, pp. 1153–1182, 2010.
    [13] S.K. Cho, H. Moon and C.J. Kim, “Creating, trans-porting and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromechanical Systems,vol. 12,pp. 70-80 ,2003.
    [14] J.C.McDonald, D.C. Duffy, J.R. Anderson, D.T Chiu., H. Wu, O.J.Schueller, G. M. Whitesides, ”Fabrication of microfluidic system in poly(dimethylsiloxane)”, Electrophoresis, vol. 21, pp. 27-40, 2000.
    [15] F. G. Tseng, C. J. Kim, and C. M. Ho, “A microinjector free of satellitedrops and characterization of the ejected droplets,” ASME IMECE Micro-Electro-Mechanical Systems,pp. 89–95,1998.
    [16] F. G. Tseng, C. J. Kim, and C. M. Ho, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part i: concept, design, and model,” J. Microelectromechanical Systems, vol. 11, no. 5, pp. 427-436, 2002.
    [17] F. G. Tseng, C. J. Kim, and C. M. Ho, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part ii: fabrication, implementation, and characterization,” J. Microelectromechanical Systems, vol. 11, no. 5, pp. 437-447, 2002.
    [18] I.D. Yang, F.G.Tseng, C.M. Chang, R.J.Yu and C.C.Chieng, “Growth/Collapse and the Induced Flow Fields for Explosive Micro Dual Bubbles,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Transducer 05, pp. 1272-1275, 2005.
    [19] I.D. Yang, F.G. Tseng,R.J. Yu and C.C. Chieng, “Bubble dynamics for explosive microthermal dual bubbles,” J. Microelectromechanical System, vol. 16,pp. 734-745, 2007.
    [20] M. Shoji and Y. Takagi,”Bubbling features from a single artificial cavity,” Int. J. Heat and Mass Transfer, vol. 44,pp 2763-2776, 2001.
    [21] S. Bae, M. Kim and J. Kim, “ Improved technique to measure time- and space-resolved heat transfer under single bubbles during saturated pool boiling of FC-72,” Exp. Heat transfer, vol.12,pp265-278,1999.
    [22] A. Asai, “Bubble dynamics in boiling under high heat flux pulse heating,” J. Heat Transfer ,vol. 113,pp. 973-979, 1991.
    [23] J. H. Tsai and L. Lin, “Transient bubble formation experiments are investigated on polysilicon micro-resisters,” J. Heat Transfer, vol. 124, pp. 375-382, 2002.
    [24] J. H. Lim, Y. S. Lee, H. T. Lim, S. S. Baek, K. Kuk, and Y. S. Oh, ”Visualization of bubbles generated by microheaters with various current density,” Conference of IEEE on Micro Electro Mechanical Systems,pp. 197-200,2003.
    [25] P. Deng, Y.K. Lee, P. Cheng, “An experimental study of heater size effect on micro bubble generation,” Int. J. Heat and Mass Transfer,vol. 49, pp 2535–2544, 2006.
    [26] Y. Hong, N. Ashgriz, and J. Andrews, “Experimental study of bubble dynamics on a micro heater induced by pulse heating, ” J. Heat Transfer, vol. 126, pp259-271, 2004.
    [27] Y.Hong, N. Ashgriz , J. Andrews and H. Parizi, “Numerical Simulation of Growth and Collapse of a Bubble Induced by a Pulsed Microheater, ” J. Microelectromechanical System, vol. 13, pp. 857-869,2004.
    [28] E. Zwaan, S. L. Gac, K. Tsuji, and C. D. Ohl, “Controlled cavitation in microfluidic systems,” Physical Review Letters, vol. 98, no. 25, 2007.
    [29] C. Rembe, S. aus der Wiesche, E. P. Hofer, “Thermal ink jet dynamics: modeling, simulation, and testing, ” Microelectronics Reliability, vol. 40, pp 525-532, 2000.
    [30] Chen, P. H., Chen, W. C., and Chang, S. H., "Bubble growth and -ink ejection process of a thermal ink jet printhead," J. Mechanical Sciences, vol. 39, no. 6, pp.683-695, 1997.
    [31] Z. Zhao, S. Glod, and D. Poulikakos, "Pressure and power generation during explosive vaporization on a thin-film microheater, " Int. J. Heat and Mass Transfer, vol.43, pp. 281-296, 2000.
    [32] S. Glod, D. Poulikakos, Z. Zhao, and G. Yadigaroglu, "An investigation of microscale explosive vaporization of water on an ultrathin pt wire, " Int. J. Heat and Mass Transfer, vol.45, pp. 267-379,2002.
    [33] Y. Iida, K. Okuyama and K. Sakurai, “Boiling nucleation on a very small film heater subjected to extremely rapid heating”, Int. J. Heat and Mass Transfer,vol. 37 , pp. 2771-2780, 1994.
    [34] T.A. Kowalewski, J. Pakleza, J.B. Chalfen, M.C. Duluc and A. Cybulski, “Visualization of vapor bubble growth,” 9th International symposium on flow visualization, pp.176-1~176-9, 2000.
    [35] J.G. Santiago, S.T. Wereley, C.D. Meinhart, D. Beebee, and R.J. Adrian, “A particle image velocimetry system for microfluidics,” Experiment in Fluids, vol. 25, no. 4, pp. 316-319, 1998.
    [36] C.D. Meinhart and H.Zhang, “The flow structure inside a microfabricated inkjet printhead,” J. Microelectromechanical System, vol. 9, pp. 67-75,2000.
    [37] S.J. Williams, C.B. Park, and S.T. Wereley, “Advances and applications on microfluidic velocimetry techniques,” Microfluidics and Nanofluidics, vol. 8, pp. 709-726, 2010.
    [38] A. Calka and R. L. Judd,”Some aspects of the interaction among nucleation sites during saturated nucleate boiling,” Int. J. Heat and Mass Transfer,vol. 28, pp. 2331-2341,1985.
    [39] R.L. Judd, “On nucleation site interaction,” J. Heat Transfer,vol. 110,pp. 475-478, 1988.
    [40] L.Zhang and M. Shoji, “Nucleation site interaction in pool boiling on the artificial surface,” Int. J. Heat and Mass Transfer, vol. 46, pp. 513-522, 2003.
    [41] Y. Tomita, A. Shima and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Applied Physics Letters,vol. 57,pp. 234-236, 1990.
    [42] K. Sato, Y. Tomita and A. Shima, “Interaction of two bubbles produced with time difference,” Cavitation and Multiphase Flow,pp. 1-5, 2004.
    [43] S. Chatpun, M. Watanabe and M. Shoji, “Experimental study on characteristics of nucleate pool boiling by the effects of cavity arrangement,” Experimental Thermal and Fluid Science, vol. 29,pp. 33-40, 2004.
    [44] S. Chatpun, M. Watanabe and M. Shoji, “Nucleation site interaction in pool nucleate boiling on a heated surface with triple artificial cavities,” Int. J. Heat and Mass Transfer , vol. 47, pp. 3583-3587, 2004.
    [45] T. G. Kang and Y. H.Cho ,“A four-bit digital microinjector using microheater array for adjusting the ejected droplet volume,” J. Microelectromechanical System, vol. 14, pp. 1031-1038, 2005.
    [46] N. Bremond, M. Arora,C.D. Ohl, and D.Lohse,“Cavitating bubbles on patterned surfaces,” Physics of Fluids, vol. 17, 2005.
    [47] N. Bremond, M. Arora,C.D. Ohl, and D.Lohse,“Cavitation on surfaces”, Journal of Physics, vol. 17, pp.3603-3608, 2005.
    [48] N. Bremond, M. Arora,C.D. Ohl, and D.Lohse,”Controlled Multibubble Surface Cavitation,” Physical Review Letters , vol. 96, 2006.
    [49] S. W. Lee, H. C. Kim, K. Kuk and Y. S. Oh, "A monolithic inkjet print head: DomeJet,” Sensors and Actuators A-Physical, vol. 95, no. 2-3, pp. 114-119, 2002.
    [50] M. Sato,M. Horie,N. Kitano,K .Ohtomo and H. Okano, ”Thermo-capillary optical switch”, Hitachi Cable Review, no. 20, pp.19-24, 2001.
    [51] J. J.Uebbing , S. Hengstler, D. Schroeder, S. Venkatesh and R. Haven, ” Heat and fluid flow in an optical switch bubble,” J. Microelectromechanical Systems ,vol. 15, pp. 1528-1539, 2006.
    [52] T.K. Jun and C.J. Kim, "Valveless pumping using traversing vapor bubbles in microchannels," J. Applied Physics, vol. 83, no. 11, pp.5658-5664, 1998.
    [53] J. H. Tsai and L. Lin,“A thermal-bubble-actuated micronozzle-diffuser pump,” J. Microelectromechanical Systems, vol. 11, pp.665-671,2002.
    [54] C. T.Ho,R. Z. Lin, H. Y. Chang and C. H. Liu, “Micromachined electrochemical T-switches for cell sorting applications,” Lab on A Chip,vol. 5, pp. 1248-1258, 2005.
    [55] H. Yu, B. Li, A. Sharon,and X. Zhang, “A parallel analysis and sorting chip for single cell study,” 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 862-864, 2005.
    [56] C. M. Chang, I. D. Yang, Y. L. Lin, C. C. Chieng and F. G. Tseng, “Efficient transfer and concentration of energy between explosive dual bubbles via time-delayed interactions,”
    Microfluidics and Nanofluidics, vol.9,pp. 329-340, 2010.
    [57] I. D. Yang, F. G. Tseng, C. M. Chang, and C. C. Chieng, “Microbubble formation dynamics under high heat flux on heaters with different aspect ratios,” Nanoscale Microscale Thermophysical Engineering, vol. 10, pp. 1-28, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE