簡易檢索 / 詳目顯示

研究生: 顏嘉良
Yen, Chia-Liang
論文名稱: 工業放流水中潛在性毒性物質的溯源和追蹤
Tracing and Tracking of Potential Toxic Substances in Industrial Discharge Water
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
Huang, Shang-Da
林嬪嬪
Lin, Pin-Pin
林立元
Lin, Lih-Yuan
張家耀
Chang, Jia-Yaw
杜敬民
Du, Jing-Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 196
中文關鍵詞: 工業放流水水蚤羅漢魚斑馬魚胚胎費氏弧菌短角異劍水蚤青鱂魚毒性鑑定評估效應導向分析
外文關鍵詞: Industrial Discharge Water, Daphnia magna, Pseudorasbora parva, Zebrafish embryos, Aliivibrio fischeri, Apocyclops royi, Oryzias latipes, Toxicity Identification Evaluation, Effect-Directed Analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對工業放流水為目標,區分工業園區廠商放流水(潛在性)化學物質評估、生物急毒性模式生物檢測方法建立、工業放流水毒性鑑定方法建立及污水處理廠放流水(潛在性毒物)的環境宿命等5大研究主軸。
    工業放流水評估:重金屬選擇硫酸銅、硫酸鋅、硫酸鎘、硫酸鎵、硫酸銦、硝酸銅、硝酸鎘、硝酸鉛、三氧化鉬等金屬鹽類代表放流水主要毒物,作為參考毒物對水蚤、羅漢魚、斑馬魚胚胎等進行生物毒性試驗。結果顯示硝酸銅的生物毒性最嚴重。有機污染物(四甲基氫氧化銨及4-氯酚)及重金屬污染物(硫酸銅),製備具生物毒性之人工水樣,三種毒物對水蚤及羅漢魚毒性大小依序為:硫酸銅 > 4-氯酚 > 氫氧化四甲基銨。分別用(1)氫氧化四甲基銨/ 4-氯酚、(2)氫氧化四甲基銨/ 硫酸銅、(3)4-氯酚 / 硫酸銅、及(4)氫氧化四甲基銨 / 4-氯酚 / 硫酸銅等進行毒物混合毒性試驗。對水蚤及羅漢魚,皆以4-氯酚 / 硫酸銅之毒性為最強,且出現協同效應。含氧化物(次氯酸鈉、過氧化氫)對水蚤及羅漢魚之毒性高低依序為:次氯酸鈉>過氧化氫;水蚤及羅漢魚的耐酸鹼範圍分別為pH 5.4~10.2及pH 4.2~10.8;二物種對二氧化矽及氟化鈣產生之濁度,皆具有極高的耐受性(>18000 NTU)。
    模式生物檢測方法建立研究:(1)建立斑馬魚胚胎毒性檢測方法;(2) 建立細菌螢光急毒性檢測方法;(3)建立短角異劍水蚤無脊椎海水生物急毒性檢測方法;(4) 建立日本青鱂魚淡水及海水水質生物急毒性檢測方法。後續進行參考毒物試驗及實際放流水檢測,結果顯示具有好的生物毒性檢測反應。
    工業放流水毒性鑑定方法建立研究:我們參考國外研究建立適用於台灣工業放流水毒性鑑定程序。表明運用於水體毒性成因鑑定及評估的潛力。結果證實利用化學分析及生物毒性分析水樣,雙向評估鑑定毒化物之可行性,可改善及彌補台灣現在的工業廢水毒性鑑定方法及生物輔助檢測方式,並強化管制河川放流水監測機制。
    放流水(潛在性毒物)的環境宿命研究:利用毒性鑑定評估程序與歐盟毒性效應導向分析方法結合,並以斑馬魚胚胎毒性檢測方法為輔助,有效鑑定及評估水體及沉積物中潛藏毒化物。
    最後建議:(1)慎選生物毒性試驗測試生物,靈敏度須有所差異。(2)研發結合毒性鑑定評估流程及效應導向分析方法,鑑定工業廢水生物毒性及毒物。(3)研發自動化和智慧化的生物毒性方法,包括急毒性和慢毒性,以持續提升方法績效和數據品質。(4)研發生物化學和細胞基礎的高通量快篩測試方法及建置相關核心技術。(5)研發計算毒理技術及建置相關軟體設備,朝向預測和預防毒理學目標邁進。


    This study is aimed at industrial wastewater, and distinguishes industrial park manufacturers' discharge water(potential chemical substances)assessment, Establishment of model bioassay method, industrial discharge water toxicity identification, and environmental fate of sewage treatment plant discharge water (potential poisons). 5 major research spindles.
    Industrial discharge water evaluation: heavy metal selection of copper sulfate, zinc sulfate, cadmium sulfate, gallium sulfate, indium sulfate, copper nitrate, cadmium nitrate, lead nitrate, molybdenum trioxide and other metal salts represent the main poison of the discharged water, as a reference poison to the water Biotoxicity tests were carried out on D.magna and Pseudorasbora parva and zebrafish embryos. The results show that copper nitrate is the most serious biological toxicity. Organic pollutants (tetramethylammonium hydroxide and 4-chlorophenol)and heavy metal pollutants (copper sulfate)to prepare bio-toxic artificial water samples. The toxicity of three poisons to D.magna and Pseudorasbora parva is: copper sulfate > 4-Chlorophenol > Tetramethylammonium hydroxide. Use(1)tetramethylammonium hydroxide / 4-chlorophenol,(2)tetramethylammonium hydroxide / copper sulfate,(3)4-chlorophenol / copper sulfate, and(4)tetramethylammonium hydroxide / 4-Chlorophenol / copper sulfate for mixed toxicity test. For D.magna and Pseudorasbora parva , the toxicity of 4-chlorophenol/copper sulfate is the strongest and synergistic effect occurs. The toxicity of sulphur(sodium hypochlorite, hydrogen peroxide)to D.magna and Pseudorasbora parva is: sodium hypochlorite > hydrogen peroxide; the acid and alkali resistance of D.magna and Pseudorasbora parva are pH 5.4 ~ 10.2 and pH 4.2 ~ 10.8, respectively. Both species have extremely high tolerance(>18000 NTU)for the turbidity produced by Silicon dioxide and calcium fluoride.
    Establishment of model bioassay method:(1)Zebrafish embryo toxicity detection method;(2)Bacterial fluorescence acute toxicity detection method;(3)Apocyclops royi invertebrates marine acute toxicity detection method;(4)Method for detecting acute toxicity of freshwater and seawater in medaka. Subsequent reference poison tests and real industrial drain water tests showed good biotoxicity detection reactions.
    Study on the method for the identification of industrial discharge water toxicity: We have established a procedure for the identification of industrial discharge water toxicity in Taiwan. Indicates the potential for identification and assessment of the cause of water toxicity. The results confirmed that chemical analysis and biological toxicity analysis of water samples, two-way evaluation of the feasibility of identifying poisons, can improve and make up for Taiwan's industrial wastewater toxicity identification methods and biological detection methods, and control the river discharge water monitoring mechanism.
    Environmental fate study of released water(potential poisons): The toxicity assessment procedure is combined with the Effect-Directed Analysis method, and the zebrafish embryo toxicity test method is used as a supplement to effectively identify and evaluate potential poisons in water bodies and sediments.
    Final recommendations:(1)Careful selection of biological toxicity test test organisms, sensitivity must be different.(2)Research and development combined with toxicity identification evaluation process and effect-oriented analysis method to identify industrial wastewater biological toxicity and poison.(3)Automation and intelligent biotoxic methods, including acute toxicity and chronic toxicity, to continuously improve method performance and data quality.(4)Research and development of biochemical and cell-based high-throughput fast screening test methods and related core technologies.(5)Research and development of toxicology technology and the establishment of related software equipment, towards the goal of predicting and preventing toxicology.

    誌謝 i 中文摘要 ii Abstract iv 目錄 vi 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 動機 3 1.3 目的 4 1.4 論文研究主題與架構方法 5 1.5 參考文獻 7 第二章 工業園區廠商放流水(潛在性化學物質)評估 8 2.1 前言 8 2.1.1 工業區廢水背景類型 8 2.1.2 汚水處理廠處理技術 9 2.1.3 工業區放流水處理標準 11 2.2 研究方法 12 2.2.1 放流水含重金屬污染物與生物毒性之關聯性評估 12 2.2.2 放流水含有機污染物與生物毒性之關聯性評估 14 2.2.3 放流水含氧化物、高濁度及高酸鹼物質污染物與生物毒性之關聯性評估16 2.2.4 放流水化學物質混合效應評估 20 2.3 結果與討論 24 2.3.1 重金屬污染物與生物毒性關聯性評估結果 24 2.3.2 有機污染物與生物毒性關聯性評估結果 26 2.3.3 含氧化物、高濁度及高酸鹼物質污染物與生物毒性關聯性評估結果 28 2.3.4 放流水化學物質混合效應分析 36 2.4 結論 43 2.4.1 重金屬污染物與生物毒性評估結論 43 2.4.2 有機污染物與生物毒性評估結論 43 2.4.3 含氧化物、高濁度及高酸鹼物質污染物與生物毒性評估結論 43 2.4.4 放流水化學物質混合效應結論 43 2.5 參考文獻 44 第三章 放流水生物毒性檢測方法建立研究 52 3.1 前言 52 3.1.1 生物急毒性的緣起 52 3.1.2 生物急毒性使用類型 52 3.1.3 台灣生物急毒性方法種類及未來挑戰 55 3.2 研究方法 57 3.2.1 斑馬魚胚胎毒性檢測方法應用評估 57 3.2.2 Microtox®毒性檢測方法應用評估 68 3.2.3 短角異劍水蚤應用於海水毒性檢測方法評估 72 3.2.4 日本青鱂魚應用於淡、海水毒性檢測方法評估 76 3.3 結果與討論 81 3.3.1 斑馬魚胚胎毒性檢測方法試驗結果 81 3.3.2 Microtox®毒性檢測方法試驗結果 89 3.3.3 短角異劍水蚤毒性檢測方法試驗結果 98 3.3.4 日本青鱂魚應用於淡、海水毒性檢測方法試驗結果 101 3.4 結論 107 3.4.1 斑馬魚胚胎毒性檢測方法建立結論 107 3.4.2 Microtox®毒性檢測方法建立結論 108 3.4.3 短角異劍水蚤應用於海水毒性檢測方法建立結論 108 3.4.4 日本青鱂魚應用於淡、海水毒性檢測方法建立 108 3.5 參考文獻 109 第四章 毒性鑑定(TIE)評估方法建立研究 116 4.1 前言 116 4.1.1 毒性減量(TRE)評估的緣起 116 4.1.2 毒性鑑定(TIE)方法的緣起 116 4.1.3 毒性鑑定(TIE)方法可去除污染物質類型 117 4.2 研究方法 118 4.2.1 適用範圍規劃 118 4.2.2 材料與設備需求 118 4.2.3 採樣與保存依據 118 4.2.4 水生生物毒性測試 119 4.2.5 第一階段毒性特性規劃 121 4.2.6 第二階段毒性鑑定規劃 125 4.2.7 化學分析 131 4.2.8 第三階段毒性確認規劃 134 4.2.9 品質管制 134 4.3 應用結果與討論 135 4.3.1 毒性鑑定評估方法應用於積體電路代工檢測 135 4.3.2 毒性鑑定評估方法應用於背光模組元件檢測 141 4.3.3 毒性鑑定評估方法應用於晶元代工A廠檢測 142 4.3.4 毒性鑑定評估方法應用於記憶體晶片製造元件檢測 148 4.3.5 毒性鑑定評估方法應用於電腦週邊及磁片製造檢測 152 4.3.6 毒性鑑定評估方法應用於晶元代工B廠檢測 155 4.3.7 毒性鑑定評估方法應用於具鹽度河川水體毒性因子檢測 159 4.4 結論 164 4.4.1 積體電路代工毒性鑑定結論 164 4.4.2 背光模組元件毒性鑑定結論 164 4.4.3 晶元代工A廠毒性鑑定結論 164 4.4.4 記憶體晶片製造元件毒性鑑定結論 165 4.4.5 電腦週邊及磁片製造毒性鑑定結論 165 4.4.6 晶元代工B廠毒性鑑定結論 165 4.4.7 應用於具鹽度河川水體毒性因子鑑定結論 166 4.5 參考文獻 167 第五章 污水處理廠放流水(潛在性毒物)的環境宿命 169 5.1 前言 169 5.1.1 沉積物與污染物之關聯性 169 5.1.2 沉積物毒性試驗評估重要性 169 5.1.3 模式生物用於沉積物毒性試驗評估方法回顧 170 5.2 研究方法 172 5.2.1 效應導向分析(Effect-Directed Analysis)方法應用 172 5.2.2 效應導向分析(EDA)方法與毒性鑑定(TIE)併用研究 173 5.2.3 斑馬魚胚胎作為沉積物生物毒性試驗模式生物 175 5.3 結果與討論 175 5.3.1 效應導向分析方法與毒性鑑定程序結合應用結果 175 5.3.2 斑馬魚胚胎對沉積物分餾液毒性試驗結果 186 5.3.3 沉積物樣品分析結果 187 5.4 結論 188 5.4.1 效應導向分析方法與毒性鑑定程序結合應用結論 188 5.4.2 斑馬魚胚胎對沉積物分餾液毒性試驗結論 189 5.4.3 沉積物樣品分析結論 189 5.5 參考文獻 190 第六章 總 結 194 6.1 結論 194 6.2 建議 195

    第一章 緒論
    1.Burkhard, L.P., Ankley, G.T., 1989. Identifying toxicants: NETAC's toxicity-based approach. Environmental Science & Technology 23, 1438-1443.
    2.B., D.P., H., R.J., 1989. Variability associated with identification of toxics in national pollutant discharge elimination system (npdes) effluent toxicity tests. Environmental Toxicology and Chemistry 8, 893-902.
    3.J., F.D., D., T.S., S., T.B., T., Y.L., P., Z.G., H., K.M., 1995. The acute whole effluent toxicity of storm water from an international airport. Environmental Toxicology and Chemistry 14, 1103-1111.
    4.M., C.P., 2000. Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environmental Toxicology and Chemistry 19, 3-13.
    5.US EPA,1989.Generalized Methodology for Conducting Industrial Toxicity Reduction Evaluations (TREs). EPA-600-2-88-070.
    6.US EPA,1991.Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures. Second Edition. EPA-600-R-91-003.
    7.US EPA,1993.Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA-600-R-92-080.
    8.US EPA,1993.Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA-600-R-92-081.
    9.US Government Accountability Office, 2012.「WATER POLLUTION EPA Has Improved Its Review of Effluent Guidelines but Could Benefit from More Information on Treatment Technologies」Report to the Ranking Member, Subcommittee on Water Resources and Environment, Committee on Transportation and Infrastructure, House of Representatives. GAO-12-845.
    10.行政院環境保護署,放流水標準,中華民國106年12月25日行政院環境保護署環署水字第1060101625號令,共計9條。

    第二章 工業園區廠商放流水(潛在性化學物質)評估
    1.Tauseef, S.M., Abbasi, T., Abbasi, S.A., 2013. Energy recovery from wastewaters with high-rate anaerobic digesters. Renewable and Sustainable Energy Reviews 19, 704-741.
    2.Chen, C.M., Yu, S.C., Liu, M.C., 2001. Use of Japanese Medaka (Oryzias latipes) and Tilapia (Oreochromis mossambicus) in Toxicity Tests on Different Industrial Effluents in Taiwan. Archives of Environmental Contamination and Toxicology 40, 363-370.
    3.Cooman, K., Gajardo, M., Nieto, J., Bornhardt, C., Vidal, G., 2003. Tannery wastewater characterization and toxicity effects on Daphnia spp. Environmental Toxicology 18, 45-51.
    4.Garric, J., Vollat, B., Nguyen, D.K., Bray, M., Migeon, B., Kosmala, A., 1996. Ecotoxicological and chemical characterization of municipal wastewater treatment plant effluents. Water Science and Technology 33, 83-91.
    5.Hongxia, Y., Jing, C., Yuxia, C., Huihua, S., Zhonghai, D., Hongjun, J., 2004. Application of toxicity identification evaluation procedures on wastewaters and sludge from a municipal sewage treatment works with industrial inputs. Ecotoxicology and Environmental Safety 57, 426-430.
    6.Köck-Schulmeyer, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., Barceló, D., 2013. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of The Total Environment 458-460, 466-476.
    7.Vasquez, M.I., Fatta-Kassinos, D., 2013. Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants? Environmental Science and Pollution Research 20, 3516-3528.
    8.觀音工業區簡介,106. https://www.moeaidb.gov.tw/iphw/kuangin/. Access.19/07/2018.
    9.科技部新竹科學工業園區https://www.sipa.gov.tw/home.jsp?serno=201001210117&mserno=201001210113&menudata=ChineseMenu&contlink=include/menu03.jsp. Access. 19/07/2018.
    10.平鎮工業區簡介,106. https://www.moeaidb.gov.tw/iphw/pingjhen/. Access. 19/07/2018.
    11.中壢工業區簡介,106. https://www.moeaidb.gov.tw/iphw/jhongli/. Access. 19/07/2018.
    12.Chou, W.-L., Wang, C.-T., Chang, S.-Y., 2009. Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption. Journal of Hazardous Materials 168, 1200-1207.
    13.Lai, C.L., Lin, S.H., 2003. Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication. Chemical Engineering Journal 95, 205-211.
    14.Daverey, A., Su, S.-H., Huang, Y.-T., Lin, J.-G., 2012. Nitrogen removal from opto-electronic wastewater using the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process in sequencing batch reactor. Bioresource Technology 113, 225-231.
    15.Lee, Y.-C., Whang, L.-M., Ngo, M.H., Chen, T.-H., Cheng, H.-H., 2016. Acute toxicity assessment of TFT-LCD wastewater using Daphnia similis and Cyprinus carpio. Process Safety and Environmental Protection 104, 499-506.
    16.Savvilotidou, V., Hahladakis, J.N., Gidarakos, E., 2014. Determination of toxic metals in discarded Liquid Crystal Displays (LCDs). Resources, Conservation and Recycling 92, 108-115.
    17.Kim, S.-B., Kim, W.-K., Chounlamany, V., Seo, J., Yoo, J., Jo, H.-J., Jung, J., 2012. Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa. Journal of Hazardous Materials 227, 327-333.
    18.Bank, 2007. Environmental, Health, and Safety Guidelines for Semiconductors & Other Electronics Manufacturing, International Finance Corporation, p. 18.
    19.行政院環境保護署,放流水標準,環署水字第1060101625號。
    20.環境保護署,「高科技產業廢水水質特性分析及管制標準探討計畫」期末報告,2007。
    21.環境保護署,「產業廢水污染調查及管制措施研議計畫(第一 ~ 三年)」期末報告,2009 ~ 2011。
    22.Henry, R., Lucu, C., Onken, H., Weihrauch, D., 2012. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology 3.
    23.Soengas, J.L., Strong, E.F., Fuentes, J., Veira, J.A.R., Andrés, M.D., 1996. Food deprivation and refeeding in Atlantic salmon,Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiology and Biochemistry 15, 491-511.
    24.Grygoryev, D., Moskalenko, O., Zimbrick, J.D., 2008. Non-Linear Effects In The Formation Of DNA Damage In Medaka Fish Fibroblast Cells Caused by Combined Action of Cadmium And Ionizing Radiation. Dose-Response 6, 283-298.
    25.V Zikić, R., S Stajn, A., Pavlović, S., I Ognjanović, B., Saičić, Z., 2001. Activities of Superoxide Dismutase and Catalase in Erythrocytes and Plasma Transaminases of Goldfish (Carassius auratus gibelio Bloch.) Exposed to Cadmium.
    26.Qu, R., Wang, X., Wang, Z., Wei, Z., Wang, L., 2014. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. Journal of Hazardous Materials 275, 89-98.
    27.Carageorgiou, H., Tzotzes, V., Pantos, C., Mourouzis, C., Zarros, A., Tsakiris, S., 2004. In vivo and in vitro Effects of Cadmium on Adult Rat Brain Total Antioxidant Status, Acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase Activities: Protection by L-Cysteine. Basic & Clinical Pharmacology & Toxicology 94, 112-118.
    28.THÉVENOD, F., FRIEDMANN, J.M., 1999. Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. The FASEB Journal 13, 1751-1761.
    29.Palaniappan, P.R., Krishnakumar, N., Vadivelu, M., 2009. Bioaccumulation of lead and the influence of chelating agents in Catla catla fingerlings. Environmental Chemistry Letters 7, 51-54.
    30.Crafford, D., Avenant-Oldewage, A., 2010. Bioaccumulation of non-essential trace metals in tissues and organs of Clarias gariepinus (sharptooth catfish) from the Vaal River system: strontium, aluminium, lead and nickel. Water SA 36, 621-640.
    31.Behra, R., 1993. In vitro effects of cadmium, zinc and lead on calmodulin-dependent actions inOncorhynchus mykiss, Mytilus sp., andChlamydomonas reinhardtii. Archives of Environmental Contamination and Toxicology 24, 21-27.
    32.M., O.A.G., Sven, W., A., M.I., Hans-Jürgen, E., Frank, K., 2007. Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822). Environmental Toxicology 22, 375-389.
    33.Scinicariello, F., Murray, H.E., Moffett, D.B., Abadin, H.G., Sexton, M.J., Fowler, B.A., 2007. Lead and δ-Aminolevulinic Acid Dehydratase Polymorphism: Where Does It Lead? A Meta-Analysis. Environmental Health Perspectives 115, 35-41.
    34.Onalaja, A.O., Claudio, L., 2000. Genetic susceptibility to lead poisoning. Environmental Health Perspectives 108, 23-28.
    35.Monteiro, V., Cavalcante, D.G.S.M., Viléla, M.B.F.A., Sofia, S.H., Martinez, C.B.R., 2011. In vivo and in vitro exposures for the evaluation of the genotoxic effects of lead on the Neotropical freshwater fish Prochilodus lineatus. Aquatic Toxicology 104, 291-298.
    36.De Boeck, G., van der Ven, K., Hattink, J., Blust, R., 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquatic Toxicology 80, 92-100.
    37.Gudrun, D.B., Andrea, V., M., B.P.H., C., L.R.A., Bart, D.W., Ronny, B., 2001. Morphological and metabolic changes in common carp, Cyprinus carpio, during short-term copper exposure: Interactions between Cu2+ and plasma cortisol elevation. Environmental Toxicology and Chemistry 20, 374-381.
    38.Jarić, I., Višnjić-Jeftić, Ž., Cvijanović, G., Gačić, Z., Jovanović, L., Skorić, S., Lenhardt, M., 2011. Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchemical Journal 98, 77-81.
    39.Sunjog, K., Gačić, Z., Kolarević, S., Višnjić-Jeftić, Ž., Jarić, I., Knežević-Vukčević, J., Vuković-Gačić, B., Lenhardt, M., 2012. Heavy Metal Accumulation and the Genotoxicity in Barbel (Barbus barbus) as Indicators of the Danube River Pollution. The Scientific World Journal 2012, 351074.
    40.Wang, C.-W., Liang, C., 2014. Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal 254, 472-478.
    41.于红霞,程静,金洪鈞,漂白廢水中關鍵有毒物質鑑别的實例研究,應用生態學報,第12卷,第3期,458-460, 2001年6月。
    42.So-Rin, O., Jung-Kon, K., Min-Jung, L., Kyungho, C., 2008. Dechlorination with sodium thiosulfate affects the toxicity of wastewater contaminated with copper, cadmium, nickel, or zinc. Environmental Toxicology 23, 211-217.
    43.Meinertz, J.R., Greseth, S.L., Gaikowski, M.P., Schmidt, L.J., 2008. Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system. Science of The Total Environment 392, 225-232.
    44.Matos, M.d.F., Botta, C.M.R., Fonseca, A.L., 2014. Toxicity Identification Evaluation (Phase I) of water and sediment samples from a tropical reservoir contaminated with industrial and domestic effluents. Environmental Monitoring and Assessment 186, 7999-8006.
    45.Hecht, T., van der Lingen, C.D., 1992. Turbidity-induced changes in feeding strategies of fish in estuaries. South African Journal of Zoology 27, 95-107.
    46.Chen, L., Fu, X.e., Zhang, G., Zeng, Y., Ren, Z., 2012. Influences of Temperature, pH and Turbidity on the Behavioral Responses of Daphnia magna and Japanese Medaka (Oryzias latipes) in the Biomonitor. Procedia Environmental Sciences 13, 80-86.
    47.El-Deeb Ghazy, M.M., Habashy, M.M., Mohammady, E.Y., 2011. Effects of pH on survival, growth and reproduction rates of the crustacean, Daphnia Magna.
    48.R., L., 1961. The toxicity of mixtures of zinc and copper sulphates to rainbow trout (Salmo gairdnerii Richardson). Annals of Applied Biology 49, 535-538.
    49.Marking, L.L.,1985. Toxicity of chemical mixtures. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing Co., New York, pp 164–176.
    50.Könemann, H., 1981. Fish toxicity tests with mixtures of more than two chemicals: A proposal for a quantitative approach and experimental results. Toxicology 19, 229-238.
    51.Chen, J., Liao, Y., Zhao, Y., Wang, L., Lu, G., Zhao, T., 1996. Quantitative Structure-Activity Relationships and Mixture Toxicity Studies of Heterocyclic Nitrogen Compounds. Bulletin of Environmental Contamination and Toxicology 57, 77-83.
    52.Wang, C.-W., Liang, C., Yeh, H.-J., 2016. Aquatic acute toxicity assessments of molybdenum (+VI) to Daphnia magna. Chemosphere 147, 82-87.
    53.Sankaramanachi, S.K., Qasim, S.R., 1999. Metal toxicity evaluation using bioassay and microtox™. International Journal of Environmental Studies 56, 187-199.
    54.Asha K. Verma and Anil Choudhary., 2017. Effect of heavy metal toxicity on Zooplankton population based on dyes and printing industries in Jodhpur (Rajasthan).Biolife, pp. 69-73.
    55.Martins, J., Oliva Teles, L., Vasconcelos, V., 2007. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International 33, 414-425.
    56.Meng, Q., Li, X., Feng, Q., Cao, Z., 2008. The Acute and Chronic Toxicity of Five Heavy Metals on the Daphnia Magna, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 4555-4558.
    57.Xiao, Y., Vijver, M.G., Chen, G., Peijnenburg, W.J.G.M., 2015. Toxicity and Accumulation of Cu and ZnO Nanoparticles in Daphnia magna. Environmental Science & Technology 49, 4657-4664.
    58.Backhaus, T., Faust, M., 2012. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environmental Science & Technology 46, 2564-2573.
    59.de Zwart, D., Slooff, W., 1987. Toxicity of mixtures of heavy metals and petrochemicals toXenopus laevis. Bulletin of Environmental Contamination and Toxicology 38, 345-351.
    60.Hagopian, D.S., Riley, J.G., 1998. A closer look at the bacteriology of nitrification. Aquacultural Engineering 18, 223-244.
    61.Buchwalter, D.B., Cain, D.J., Martin, C.A., Xie, L., Luoma, S.N., Garland, T., 2008. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proceedings of the National Academy of Sciences 105, 8321-8326.
    62.Pagenkopf, G.K., 1983. Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environmental Science & Technology 17, 342-347.
    63.Paquin, P.R., Gorsuch, J.W., Apte, S., Batley, G.E., Bowles, K.C., Campbell, P.G.C., Delos, C.G., Di Toro, D.M., Dwyer, R.L., Galvez, F., Gensemer, R.W., Goss, G.G., Hogstrand, C., Janssen, C.R., McGeer, J.C., Naddy, R.B., Playle, R.C., Santore, R.C., Schneider, U., Stubblefield, W.A., Wood, C.M., Wu, K.B., 2002. The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 133, 3-35.

    第三章 放流水生物毒性檢測方法建立研究
    1.USEPA, 1975. Methods for Acute Toxicity Tests with Fish, Macroinvertebrates, and Amphibians. EPA/600/3-75/009
    2.Barata, C., Alañon, P., Gutierrez-Alonso, S., Riva, M.C., Fernández, C., Tarazona, J.V., 2008. A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for Environmental Risk Assessment of toxic effluents. Science of The Total Environment 405, 78-86.
    3.Cooman, K., Gajardo, M., Nieto, J., Bornhardt, C., Vidal, G., 2003. Tannery wastewater characterization and toxicity effects on Daphnia spp. Environmental Toxicology 18, 45-51.
    4.Farré, M., Barceló, D., 2003. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends in Analytical Chemistry 22, 299-310.
    5.Kuzmanović, M., López-Doval, J.C., De Castro-Català, N., Guasch, H., Petrović, M., Muñoz, I., Ginebreda, A., Barceló, D., 2016. Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status. Science of The Total Environment 540, 324-333.
    6.Ellis, M.M., 1937. Detection and Measurement of Stream Pollution.
    7.Johnson, W.W., Finley, M.T., 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78, Resource Publication, p. 106.
    8.Baldwin, A.K., Corsi, S.R., De Cicco, L.A., Lenaker, P.L., Lutz, M.A., Sullivan, D.J., Richards, K.D., 2016. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity. Science of The Total Environment 554, 42-52.
    9.Burton, G.A., Greenberg, M.S., Rowland, C.D., Irvine, C.A., Lavoie, D.R., Brooker, J.A., Moore, L., Raymer, D.F.N., McWilliam, R.A., 2005. In situ exposures using caged organisms: a multi-compartment approach to detect aquatic toxicity and bioaccumulation. Environmental Pollution 134, 133-144.
    10.Dave, G., Aspegren, P., 2010. Comparative toxicity of leachates from 52 textiles to Daphnia magna. Ecotoxicology and Environmental Safety 73, 1629-1632.
    11.Fjällborg, B., Li, B., Nilsson, E., Dave, G., 2006. Toxicity Identification Evaluation of Five Metals Performed with Two Organisms (Daphnia magna and Lactuca sativa). Archives of Environmental Contamination and Toxicology 50, 196-204.
    12.McWilliam, R.A., Baird, D.J., 2002. Postexposure feeding depression: A new toxicity endpoint for use in laboratory studies with Daphnia magna. Environmental Toxicology and Chemistry 21, 1198-1205.
    13.Mount, D.R., Gulley, D.D., Hockett, J.R., Garrison, T.D., Evans, J.M., 1997. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environmental Toxicology and Chemistry 16, 2009-2019.
    14.USEPA, 1975. Methods for Acute Toxicity Tests with Fish, Macroinvertebrates, and Amphibians. EPA-660/3-75-009
    15.ASTME, 2014.Standard Guide for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians. 729 – 96.
    16.Guido, P., Blahoslav, M., Irina, B., Andrea, T., Dzidra, Z., Levonas, M., Grzegorz, N.-J., Lucica, T., Nadejda, S., Livia, T., Boris, K., 2003. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology 18, 395-402.
    17.財團法人生物開發技術中心,1992. “生物急毒性標準試驗法建立研究”,第1-41頁。
    18.行政院環境保護署,生物急毒性檢測方法-鯉魚靜水式法(NIEA B904)
    19.行政院環境保護署,生物急毒性檢測方法-羅漢魚靜水式法(NIEA B902)
    20.行政院環境保護署,生物急毒性檢測方法-粗首鱲靜水式法(NIEA B903)
    21.行政院環境保護署,生物急毒性檢測方法-米蝦靜水式法(NIEA B905)
    22.行政院環境保護署,生物急毒性檢測方法-水蚤靜水式法(NIEA B901)
    23.行政院環境保護署,水樣急毒性檢測方法-藻類靜水式法(NIEA B906)
    24.Nagel, R., 2002. DarT: The embryo test with the Zebrafish Danio rerio - A general model in ecotoxicology and toxicology.
    25.Strähle, U., Scholz, S., Geisler, R., Greiner, P., Hollert, H., Rastegar, S., Schumacher, A., Selderslaghs, I., Weiss, C., Witters, H., Braunbeck, T., 2012. Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology 33, 128-132.
    26.OECD GUIDELINE FOR TESTING OF CHEMICALS,1998. Fish, Short-term Toxicity Test on Embryo and Sac-fry Stages. Test No. 212.
    27.OECD Guideline for the Terting of Chemicals, 2012.Draft Proposal for a New Guideline Fish Embryo Acute Aquatic Toxicity (FET) Test No.203.
    28.BS-EN-ISO-15088-2008,Water quality- Determination of Acute Toxicity of Waste Water to Zebrafish Eggs(Danio rerio).
    29.Weigt, S., Huebler, N., Strecker, R., Braunbeck, T., Broschard, T.H., 2011. Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281, 25-36.
    30.Incardona, J.P., Linbo, T.L., Scholz, N.L., 2011. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicology and Applied Pharmacology 257, 242-249.
    31.Kubota, A., Stegeman, J.J., Woodin, B.R., Iwanaga, T., Harano, R., Peterson, R.E., Hiraga, T., Teraoka, H., 2011. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2. Toxicology and Applied Pharmacology 253, 244-252.
    32.B., K.C., W., B.W., R., K.S., Bonnie, U., F., S.T., 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253-310.
    33.Johnson, F.H., Carver, C.M., Harryman, W.K., 1942. Luminous Bacterial Auxanograms in Relation to Heavy Metals and Narcotics, Self-Photographed in Color. Journal of Bacteriology 44, 703-715.
    34.Tchan, Y.T., Roseby, J.E., Funnell, G.R., 1975. A new rapid specific bioassay method for photosynthesis inhibiting herbicides. Soil Biology and Biochemistry 7, 39-44.
    35.ASTM STP 667, 1979.Use of Luminescent Bacteria for Determining Toxicity in Aquatic Environments.Aquatic Toxicology, 98-106.
    36.U.S,2003.Environmental Protection Agency. Environmental Technology Verification Report.
    37.UNE EN ISO 11348-3,2009 .Water Quality - Determination Of The Inhibitory Effect Of Water Samples On The Light Emission Of Vibrio Fischeri (luminescent Bacteria Test) - Part 3: Method Using Freeze-dried Bacteria.
    38.行政院環境保護署,1994,「生物毒性篩選試驗研究」期末報告。
    39.邱舜稜,2002,碩士論文「以Microtox檢測方法評估實際廢水生物毒性之研究」,國 立中央大學。
    40.Shahidul Islam, M., Tanaka, M., 2004. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin 48, 624-649.
    41.Wang, S., Cao, Z., Lan, D., Zheng, Z., Li, G., 2008. Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary. Environmental Geology 55, 963-975.
    42.Molisani, M.M., Marins, R.V., Machado, W., Paraquetti, H.H.M., Bidone, E.D., Lacerda, L.D., 2004. Environmental changes in Sepetiba Bay, SE Brazil. Regional Environmental Change 4, 17-27.
    43.K.-W., L., S., R., D.-S., H., G., P.H., J.-S., L., 2007. Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: Evaluation of its use as a benchmark species for routine ecotoxicity tests in Western Pacific coastal regions. Environmental Toxicology 22, 532-538.
    44.Smit, M., Kater, B., Jak, R., Heuvel-Greve, M., 2006. Trandating bioassay results to field population responses using a Leslie-matrix model for the marine amphipod Corophium volutator.
    45.Mauchline J, 1998. The Biology of Calanoid Copepods. Adv. Mar. Biol. 33, 1-710.
    46.Nelson, J.D., Eckert, S.A., 2007. Foraging ecology of whale sharks (Rhincodon typus) within Bahía de Los Angeles, Baja California Norte, México. Fisheries Research 84, 47-64.
    47.Rakhesh, M., Raman, A.V., Sudarsan, D., 2006. Discriminating zooplankton assemblages in neritic and oceanic waters: A case for the northeast coast of India, Bay of Bengal. Marine Environmental Research 61, 93-109.
    48.Jürgen, J., 1961. LABORATORY CULTIVATION OF THE MARINE COPEPOD PSEUDODIAPTOMUS CORONATUS WILLIAMS1, 2. Limnology and Oceanography 6, 443-446.
    49.Heinle, D.R., 1966. Production of a calanoid copepod,Acartia tonsa, in the Patuxent River estuary. Chesapeake Science 7, 59-74.
    50.Su, H.M., Su, M.S., Liao, I.C., 1997. Collection and culture of live foods for aquaculture in Taiwan. Hydrobiologia 358, 37-40.
    51.Kyun-Woo, L., Hans-U., D., Gi, P.H., Jung-Hoon, K., 2013. Population growth and productivity of the cyclopoid copepods Paracyclopina nana, Apocyclops royi and the harpacticoid copepod Tigriopus japonicus in mono and polyculture conditions: a laboratory study. Aquaculture Research 44, 836-840.
    52.Beaugrand, G., Reid, P.C., Ibañez, F., Lindley, J.A., Edwards, M., 2002. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science 296, 1692-1694.
    53.鄭新鴻、陳凰琴、陳紫媖,2010,優質餌料生物(橈足類)量產及在種苗生產之應用研究, 東港生技研究中心, 99農科-10.3.1-水-A3(5).
    54.Yuji, I., 2000. Medakafish as a model system for vertebrate developmental genetics. BioEssays 22, 487-495.
    55.Jozuka K, 1976. Adaptation of gill adenosinetriphosphatase in the euryhaline teleost, medaka (Oryzias latipes). Ann. Sci. Kanazawa Univ. 13, 81-90.
    56.Miyamoto T, Machida T, Kawashima S, 1986. Influence of environmental salinity on the development of chloride cells of freshwater and brackish-water medaka, Oryzias latipes. Zool. Sci. 3, 859-865.
    57.Haruta, K., Yamashita, T., Kawashima, S., 1991. Changes in arginine vasotocin content in the pituitary of the medaka (Oryzia latipes) during osmotic stress. General and Comparative Endocrinology 83, 327-336.
    58.Sakamoto, T., Kozaka, T., Takahashi, A., Kawauchi, H., Ando, M., 2001. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193, 347-354.
    59.孟振、王國棟、劉新富、劉濱、賈玉東、鲍鹰、張和森,2013.環境因素對短角異劍水蚤攝食的影響,海洋科学.,37( 1), 81-86.
    60.許登瑋,2008,不同食物對橈足類短角異劍水蚤族群成長及脂肪酸組成之影響,國立臺灣大學漁業科學研究所碩士論文。
    61.鄭新鴻、陳凰琴、陳紫媖,2004,餌料生物橈族類的培養與研究,水試專訊。
    62.Hsu C.H., Su H.M., and Chen I.M., 2001.Effects of food types on the development and reproduction of Apocyclops royi. In: Larvi’01-Fish and Shellfish Larviculture Symposium, edited by C.I. Hendry, G. Van Stappen, M. Wille and P. Sorgeloos, pp.250-253. Oostende, Belgium, European Aquaculture Society, Special Publication No. 30.
    63.鄭新鴻,2002,添加人工培養基醱酵液對培養模糊許水蚤的增殖效果,水產試驗所年報。

    第四章 毒性鑑定(TIE)評估方法建立研究
    1.Chapman PM. Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environ Toxicol Chem .2000; 19: 3-13.
    2.US EPA. Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA 821-B-00-004(2000).
    3.Aguayo S, Muñoz MJ, de la Torre A, Roset J, de la Peña E, Carballo M. Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Sci Total Environ.2004; 328: 69-81.
    4.Júnior HM, Silva Jd, Arenzon A, Portela CS, Ferreira ICFdS, Henriques JAP. Evaluation of genotoxicity and toxicity of water and sediment samples from a Brazilian stream influenced by tannery industries. Chemosphere .2007; 67: 1211-1217.
    5.Teodorović I, Bečelić M, Planojević I, Ivančev-Tumbas I, Dalmacija B. The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment in Vojvodina (Serbia). Environ Monit Assess .2008; 158: 381.
    6.USEPA. Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures. Second Edition. EPA/600/6-91/003(1991), 1991.
    7.USEPA. Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA/600/R-92/080(1993), 1993a.
    8.USEPA. Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA/600/R-92/081(1993), 1993b.
    9.行政院環境保護署,生物急毒性檢測方法-水蚤靜水式法(NIEA B901)
    10.行政院環境保護署,生物急毒性檢測方法-羅漢魚靜水式法(NIEA B902)
    11.行政院環境保護署,生物急毒性檢測方法-鯉魚靜水式法(NIEA B904)
    12.行政院環境保護署,生物急毒性檢測方法-細菌冷光法(NIEA B301)
    13.行政院環境保護署,監測井地下水採樣方法(NIEA W103)
    14.行政院環境保護署,河川、湖泊及水庫水質採樣通則(NIEA W104)
    15.行政院環境保護署,事業放流水採樣方法(NIEA 109)
    16.行政院環境保護署,環境樣品採集及保存作業指引(NIEA-PA102)
    17.行政院環境保護署,水中揮發性有機化合物檢測方法吹氣捕捉/氣相層析質譜儀法(NIEA W785)。
    18.行政院環境保護署,水中半揮發性有機化合物檢測方法-氣相層析質譜儀法(NIEA W801)。
    19.行政院環境保護署,水中總有機碳檢測方法-過氧焦硫酸鹽/紫外光氧化法(NIEA W532)
    20.行政院環境保護署,水中總溶解固體及懸浮固體檢測方法-103~105℃乾燥(NIEA W210)
    21.行政院環境保護署,水中餘氯檢測方法-分光光度計法(NIEA W408.51A)
    22.行政院環境保護署,水中氨氮檢測方法-分立分析系統比色法(NIEA W457)
    23.行政院環境保護署,水中陰離子檢測方法-離子層析法(NIEA W415)

    第五章 污水處理廠放流水(潛在性毒物)的環境宿命
    1.Crawford, D.W., Bonnevie, N.L., Wenning, R.J., 1995. Sources of Pollution and Sediment Contamination in Newark Bay, New Jersey. Ecotoxicology and Environmental Safety 30, 85-100.
    2.Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., Yu, X., Liang, R., Gao, C., Chen, W., 2007. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin 54, 974-982.
    3.Stringer, T.J., Glover, C.N., Keesing, V., Northcott, G.L., Gaw, S., Tremblay, L.A., 2014. Development of acute and chronic sediment bioassays with the harpacticoid copepod Quinquelaophonte sp. Ecotoxicology and Environmental Safety 99, 82-91.
    4.Ebele, A.J., Abou-Elwafa Abdallah, M., Harrad, S., 2017. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3, 1-16.
    5.Taebi, A., Droste, R.L., 2004. Pollution loads in urban runoff and sanitary wastewater. Science of The Total Environment 327, 175-184.
    6.Brown, R.C., Pierce, R.H., Rice, S.A., 1985. Hydrocarbon contamination in sediments from urban stormwater runoff. Marine Pollution Bulletin 16, 236-240.
    7.Liebens, J., 2001. Heavy metal contamination of sediments in stormwater management systems: the effect of land use, particle size, and age. Environmental Geology 41, 341-351.
    8.Samoiloff, M.R., Bell, J., Birkholz, D.A., Webster, G.R.B., Arnott, E.G., Pulak, R., Madrid, A., 1983. Combined bioassay-chemical fractionation scheme for the determination and ranking of toxic chemicals in sediments. Environmental Science & Technology 17, 329-334.
    9.Rainbow, P.S., 1995. Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin 31, 183-192.
    10.United States Environmental Protection Agency,2007.Sediment Toxicity Identification Evaluation,EPA/600/R-07/080.
    11.Brack, Werner,2011. Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry.
    12.Qi, H., Li, H., Wei, Y., Mehler, W.T., Zeng, E.Y., You, J., 2017. Effect-Directed Analysis of Toxicants in Sediment with Combined Passive Dosing and in Vivo Toxicity Testing. Environmental Science & Technology 51, 6414-6421.
    13.Muschket, M., Di Paolo, C., Tindall, A.J., Touak, G., Phan, A., Krauss, M., Kirchner, K., Seiler, T.-B., Hollert, H., Brack, W., 2018. Identification of Unknown Antiandrogenic Compounds in Surface Waters by Effect-Directed Analysis (EDA) Using a Parallel Fractionation Approach. Environmental Science & Technology 52, 288-297.
    14.US EPA, 1991. Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures. Second Edition. EPA-600-R-91-003.
    15.US EPA, 1993.Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA-600-R-92-080.
    16.US EPA, 1993.Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA-600-R-92-081.
    17.M., B.R., T., H.K., Werner, B., Marja, L., 2013. Effects-directed analysis (EDA) and toxicity identification evaluation (TIE): Complementary but different approaches for diagnosing causes of environmental toxicity. Environmental Toxicology and Chemistry 32, 1935-1945.
    18.Schmitt, S., Reifferscheid, G., Claus, E., Schlüsener, M., Buchinger, S., 2012. Effect directed analysis and mixture effects of estrogenic compounds in a sediment of the river Elbe. Environmental Science and Pollution Research 19, 3350-3361.
    19.Eric, H., Stefanie, G., D., J.P., Tobias, S., Thomas-B., S., Lübcke-von, V.U., Werner, B., Jan, W., Hanno, Z., P., G.J., Henner, H., Markus, H., 2012. Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect-directed analysis. Environmental Toxicology and Chemistry 31, 1053-1062.
    20.Mathur, P., Guo, S., 2010. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiology of Disease 40, 66-72.
    21.G, K., U, R., P, D.A., 2007. Zebrafish: An Emerging Model System for Human Disease and Drug Discovery. Clinical Pharmacology & Therapeutics 82, 70-80.
    22.Louhimies, S., 2003. Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes.
    23.Hollert, H., Keiter, S., König, N., Rudolf, M., Ulrich, M., Braunbeck, T., 2003. A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. Journal of Soils and Sediments 3, 197-207.
    24.Thomas, K., V., H.A., Georg, R., Werner, M., Thomas, B., Henner, H., 2006. A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environmental Toxicology and Chemistry 25, 2097-2106.
    25.M., S., A., O., T., B., 2002. Effects of sediment eluates and extracts from differently polluted small rivers on zebrafish embryos and larvae. Journal of Fish Biology 61, 24-38.
    26.Kosmehl, T., Hallare, A.V., Braunbeck, T., Hollert, H., 2008. DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 650, 1-14.
    27.Hicken, C.E., Linbo, T.L., Baldwin, D.H., Willis, M.L., Myers, M.S., Holland, L., Larsen, M., Stekoll, M.S., Rice, S.D., Collier, T.K., Scholz, N.L., Incardona, J.P., 2011. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proceedings of the National Academy of Sciences 108, 7086-7090.
    28.Legler, J., van Velzen, M., Cenijn, P.H., Houtman, C.J., Lamoree, M.H., Wegener, J.W., 2011. Effect-Directed Analysis of Municipal Landfill Soil Reveals Novel Developmental Toxicants in the Zebrafish Danio rerio. Environmental Science & Technology 45, 8552-8558.
    29.Chiranjib, C., Chi Hsin, H., Zhi Hong, W., Chang Shing, L., Govindasamy, A., 2009. Zebrafish: A Complete Animal Model for In Vivo Drug Discovery and Development. Current Drug Metabolism 10, 116-124.
    30.Carroll, P.M., Dougherty, B., Ross-Macdonald, P., Browman, K., FitzGerald, K., 2003. Model systems in drug discovery: chemical genetics meets genomics. Pharmacology & Therapeutics 99, 183-220.
    31.Zon, L.I., Peterson, R.T., 2005. In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery 4, 35.

    QR CODE