簡易檢索 / 詳目顯示

研究生: 鄭旭君
Hsu-Chun Cheng
論文名稱: 低介電常數薄膜作為深紫外光微影之抗反射層研究
The Study of Low Dielectric Constant Films as Antireflective Coating Layers in Deep Ultraviolet Lithography
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 抗反射層低介電常數材料深紫外光微影
外文關鍵詞: antireflective coating (ARC), low dielectric constant material, deep ultraviolet lithography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究一種利用低介電常數材料作為深紫外光微影中底抗反射層技術,此底抗反射層由於是利用低介電常數材料(FLARE、SILK、BCB)所構成的,可藉由控制其覆蓋硬質罩幕層之厚度,得到一性質極佳的底抗反射層,可以將來自底材的反射率降低至1 %以下,大幅提升元件製程之可靠度。此外,本抗反射層可適用於金屬連結製程中鋁、銅、鎢、氮化鈦及氮化鉭等高度反光之基底材料。由於此抗反射材料本身是由低介電常數材料所構成,因此在微影製程中可省去再外加抗反層的步驟,並增加製程的可靠度及競爭性。而有關此薄膜的其他性質,包括蝕刻特性、模擬、熱穩定性及物理化學特性等,將在本論文中做系統性探討。


    A new structure of which can be use in bottom antireflective coating (BARC) layer of KrF and ArF photolithography is proposed. These antireflective layers, including benzocyclobutene (BCB), SILK and FLARE materials, are also the low dielectric constant film. By adding an optimized etching hard mask layer, the reflectance at resist / silicon substrate interface can be achieved to lower than 1 %. These films demonstrate the potential capability to be used as the BARC layer on highly reflectance substrates for metal interconnect application. Based on the properties of BARC and low dielectric constant, the process reliability of these materials can be ensured and the process competence can be promoted. In addition, other process characteristics such as etching durability, thermal stability, simulation, and physical and chemical behaviors of BCB, SILK and FLARE layers are also discussed.

    第一章 緒論………………………………………………….1 第二章 基本原理…………………………………………….4 2.1 鑲嵌製程及低介電常數材料的種類…………………..……..4 2.1.1 溝槽在先(Trench First)型…..………………………5 2.1.2 介層洞在先(Via First)型……………………………6 2.1.3 自我對準(Self-Aligned)型…………………………..7 2.1.4 低介電常數材料在鑲嵌結構之應用…………………..7 2.1.5 鑲嵌製程及低介電常數材料的未來發展……………..9 2.2. 光反射引起效應說明…………………………………………9 2.3. 抗反射層原理………………………………………………..10 2.3.1 頂抗反射層設計原理………………………………..12 2.3.2 底抗反射層設計原理………………………………..14 第三章 實驗材料及儀器設備……………………………...24 3.1. 實驗材料……………………………………………………..24 3.2 實驗流程之成膜方法………………………………………...25 3.2.1 低介電常數薄膜製作…………………………………25 3.2.2 蝕刻罩幕層的覆蓋……………………………………26 3.2.3 光阻劑的旋塗…………………………………………27 3.3 實驗流程之特性量測其儀器原理…………………………...27 3.3.1 光學性質的量測儀器…………………………………27 3.3.2 薄膜應力量測儀器……………………………………28 3.3.3 蝕刻特性量測儀器……………………………………29 3.3.4薄膜熱穩定性測試儀器……………………………….30 第四章 結果與討論………………………………………...34 4.1光學特性………………………………………………………35 4.1.1 光學常數………………………………………………35 4.1.2 反射率…………………………………………………35 4.1.3 反射率之擺動曲線……………………………………37 4.1.4 模擬結果………………………………………………40 4.2 蝕刻性質……………………………………………………...42 4.2.1 FLARE的蝕刻特性………………………………….43 4.2.2 BCB的蝕刻特性…………………………………….44 4.3 機械性質……………………………………………………...45 4.3.1 應力…………………………………………………..45 4.3.2 附著力………………………………………………..46 4.3.3 接觸角………………………………………………..46 4.4 熱穩定性……………………………………………………...47 第五章 總結………………………………………………...81

    1. John Sturtevant and Bernie Roman, “Antireflection strategies for advanced photolithography,” Microlithography World, Vol.4 (1995) pp.13-21.
    2. Sang-Soo Choi, Han Sun Cha, Jong-Soo Kim, Jong Mun Park, Doh Hoon Kim, Kag Hyeon Lee, Jinho Ahn, Hai Bin Chung, and Bo Woo Kim, “A novel anti-reflective structure for metal layer patterning,” Proc. of SPIE, Vol. 3333 (1998) pp.336-346.
    3. Yoshio Kawai, Akihiro Otaka, Akinobu Tanaka, and Tadahito Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys., Vol. 33 (1994) pp.7023-7027.
    4. Moon-Gyu Sung, Young-Mi Lee, Eun-Mi Lee, Young-Soo Sohn, Ilsin An, and Hye-Keun Oh, “Soft bake effect in 193 nm chemically amplified resist,” Proc. of SPIE, Vol. 3999 (2000) pp.1062-1069.
    5. Sung-Eun Hong, Min-Ho Jung, Jae-Chang Jung, Geunsu Lee, Jin-Soo Kim, Cha-Won Koh, and Ki-Ho Baik, “The acidity control for compatibility of novel organic bottom antireflective coating materials with various KrF and ArF photoresists,” Proc. of SPIE, Vol. 3999 (2000) pp.966-973.
    6. C. A. Mack , “Antireflective coatings,” Microlithography World, Vol.3 (1997) pp.29.
    7. Hsuen-Li Chen and Lon A. Wang, “Hexamethyldisiloxane film as the bottom antireflective coating layer for ArF excimer laser lithography,” Applied Optics, Vol. 38 (1999) pp.4885-4890.
    8. Ryoko Yamanaka, Takashi Hattori, Toshiyuki Mine, Keiko Hattori, Toshihiko Tanaka and Tsuneo Terasawa, “Suppression of resist-pattern deformation on SiON bottom antireflective layer in deep-UV lithography,” Proc. of SPIE, Vol. 3678 (1999) pp.198-204.
    9. Etsuko Iguchi, Hiroshi Komano, Toshimasa Nakayama, “A new bottom anti-reflection coating approach for KrF lithography at sub 150 nm design rule,” Proc. of SPIE, Vol. 3999 (2000) pp.521-530.
    10. Jim D. Meador, Xie Shao, Vandana Krishnamurthy, Manuel Arjona, Mandar Bhave, Gu Xu, James Claypool, and Anne Lindgren, “Second-Generation 193 nm Bottom Antireflective Coatings (BARCs),” Proc. of SPIE, Vol. 3999 (2000) pp.1009-1018.
    11. T. Hasegawa, K. Ikeda, K. Tokunaga, I. Yamamura, M. Fukasawa, H. Kito, “Copper dual damascene interconnect with low-K dielectric using FLARE and an organic-silicates hard mask,” International Electron Devices Meeting, (1999) pp.623.
    12. Kazuhiko Endo and Toru Tatsumi, “Nitrogen doped fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics,” Appl. Phys. Lett., Vol. 68 (1996) pp.3656-3658.
    13. Kazuhiko Endo and Toru Tatsumi, “Deposition of silicon dioxide films on amorphous carbon films by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics,” Appl. Phys. Lett., Vol. 70 (1997) pp.1078-1079.
    14. D. Louis, C. Peyne, C. Arvet, E. Lajoinie, D. Maloney, S. Lee, “Post Etch Cleaning of Dual Damascene System Integrating Copper and SiLKTM,” Proc. of the International Interconnect Technology Conference (IITC), (1999) pp.103-105.
    15. K. Ronse, M. Maenhoudt, I. Pollentier, V. Wiaux, H. Struyf, M. Lepage S. Vanhaelemeersch, “Lithogaphy as a critical step for low-k dual damascene: from 248 nm to 193 nm,” Proc. of the International Interconnect Technology Conference (IITC), pp.87-89 (2000).
    16. Shuji Ding, Wenbing Kang, Hatsuyki Tanaka, Sunit Dixit, Ron Eakin, Jianhui Shan, Eleazer Gonzalez, Ying Liu, Dinesh N. Khanna, “Optimization of bottom antireflective coating materials for dual damascene process,” Proc. of SPIE, Vol. 3999 (2000) pp.910-918.
    17. S. Sankaran, W. Harris, G. Nuesca, E. O. Shaffer, S. J. Martin, and R. E. Geer, ”Development of TiSiN Diffusion Barriers for Cu/SILK Metallization Schemes,” Proc. of the International Interconnect Technology Conference (IITC), (2000) pp.40-42.
    18. Xuelong Shi, Allen Fung, Stephen Hsu, Zongyu Li, Tim Nguyen, Robert Socha, Will Conley, Mircea Dusa, “Dual damascene photo process using negative tone resist,” Proc. of SPIE, Vol. 3999 (2000) pp.835-842.
    19. Sang-Soo Choi, Han Sun Cha, Jong-Soo Kim, Jong Mun Park, Doh Hoon Kim, Kag Hyeon Lee, Jinho Ahn, Hai Bin Chung, and Bo Woo Kim, “A novel anti-reflective structure for metal layer patterning,” Proc. of SPIE, Vol. 3333 (1998) pp.336-346.
    20. James R. Sheats and Bruce W. Smith,” Microlithography Science and Technology,” (Marcel Dekker, New York, 1998).
    21. L. F. Thompson, C. G. Willson, M. J. Bowden, “Introduction to Microliithography,” (American Chemical Society publication, Washington D. C. 1994).
    22. Johannes van Wingerden, “Optimisation of substrate reflectivity, resist thickness and resist absorption for CD control and resolution,” Proc. of SPIE, Vol. 3679 (1999) pp.905-913.
    23. C. Y. Chang, and S. M. Sze, “ULSI Technology,” (McGraw-Hill Company publication, New York, 1996).
    24. Byung-Hyuk Jun, Sang-Soo Han, Kyong-Sub Kim, Joon-Sung Lee, Zhong-Tao Jiang, Byeong-Soo Bae, Kwangsoo No, Dong-Wan Kim, Ho-Young Kang, and Young-Bum Koh, “Titanium oxide film for the bottom antireflective layer in deep ultraviolet lithography,” Applied Optics, Vol.36 (1997) pp.1482-1486.
    25. Shuo-Yen Chou, Chien-Ming Wang, Chin-Chiu Hsia, Li-Jui Chen, Gue-Wuu Hwang, Shyh-Dar Lee, and Jen-Chung Lou, “Anti-reflection strategies for sub-0.18μm dual damascene structure patterning on KrF 248 nm lithography,” Proc. of SPIE, Vol. 3679 (1999) pp.923-931.
    26. Satoko Nakaoka, Hisashi Watanabe, and Yoshimitsu Okuda, “Comparison of CD variation between organic and inorganic bottom anti-reflective coating on topographic substrates,” Proc. of SPIE, Vol. 3679 (1999) pp.932-941.
    27. C. H. Lin, L. A. Wang, and H. L. Chen, “Optimized bilayer hexamethyldisiloxane film as bottom antireflective coating for both KrF and ArF lithographies,” J. Vac. Sci. Technol. B, Vol. 18, No. 6 (2000) pp.3323-3327.
    28. A. Schiltz, J-F. Terpan, G. Amblard, and P. J. Paniez, “Bottom Anti-Reflective Coatings for DUV Lithography: Determination of optimum thermal process conditions,” J. Microelectronic Engineering, Vol. 35 (1997) pp.221-224.
    29. George E. Bailey, Nicholas K. Eib, Earnest C. Murphy, “Progressions in deep ultraviolet bottom antireflective coatings,” Proc. of SPIE, Vol. 3999 (2000) pp.935-948.
    30. Peter Trefonas, Robert Blacksmith, Charles R. Szmanda, Robert Kavanagh, Tim Adams, Gary N. Taylor, Suzanne Coley, and Gerd Pohlers, “Organic antireflective coatings for 193 nm lithography,” Proc. of SPIE, Vol. 3678 (1999) pp.702-712.
    31. James C. Cox, Lynn Welsh, Deborah Murphy, “Process effects resulting from conversion to a safe-solvent organic BARC,” Proc. of SPIE, Vol. 3333 (1998) pp.1040-1050.
    32. Qizhi He, Wei W. Lee, Maureen Hanratty, Daty Rogers, Guoqiang Xing, Abha Singh, Eden Zieliski, “Inorganic antireflective coating process for deep-UV lithography,” Proc. of SPIE, Vol. 3334 (1998) pp.337-346.
    33. Qun Ying Lin, Alex Cheng, John Sudijono and Charles Lin, “Dual layer inorganic SiON bottom ARC for 0.25μm DUV hard mask applications,” Proc. of SPIE, Vol. 3678 (1999) pp.186-197.
    34. Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18μm technology,” Proc. of SPIE, Vol. 3333 (1998) pp.324-333.
    35. Tetsuo Gocho, Tohru Ogawa, Masakazu Muroyama and Jun-ichi Sato, “Chemical vapor deposition of anti-reflective layer film for excimer laser lithography,” Jpn. J. Appl. Phys., Vol. 33 (1994) pp.486-490.
    36. Yasunobu Onishi, Yasuhiko Sato, Eishi Shiobara, Seiro Miyoshi, Hideto Matsuyama, Junko Abe, Hideo Ichinose, Tokuhisa Ohiwa, Yoshihiko Nakano, Sawako Yoshikawa, and Shuzi Hayase, “Application of polysilanes for deep UV antireflective coating,” Proc. of SPIE, Vol. 3678 (1999) pp.205-212.
    37. Tohru Ogawa, Atsushi Sekiguchi, Noritsugu Yoshizawa, “Advantages of a SiOxNy:H anti-reflective layer for ArF excimer laser lithography,” Jpn. J. Appl. Phys. Vol. 35 (1996) pp.6360-6365.
    38. G. Y. Lee, Z. G. Lu, D. M. Dobuzinsky, X. J. Ning, and G. Costrini, “Dielectric anti-reflection coating application in a 0.175μm dual-damascene process,” Proc. of the International Interconnect Technology Conference (IITC), pp.87-89 (1998).
    39. H. W. Thompson, S. Vanhaelemeersch, K. Maex, A. Van Ammel, G. Beyer, B. Coenegrachts, I. Vervoort, J. Waeterloos, H. Struyf, R. Palmans, and L. Forester, “Etch Process Development for FLARETM for Dual Damascene Architecture using a N2/O2 plasma,” Proc. of the International Interconnect Technology Conference (IITC), (1999) pp.59-61.
    40. Steven J. Martin, James P. Godschalx, Michael E. Mills, Edward O. Shaffer II, and Paul H. Townsend, “Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect,” Adv. Mater. 2000, 12, No. 23, December 1.
    41. Philip E. Garrou, Robert H. Heistand, Mitchell G. Dibbs, Teresa A. Mainal, Carol E. Mohler, Theodore M. Stokich, Paul H. Townsend, Gretchen M. Adema, Michelle J. Berry, and Iwona Turlik, “Rapid thermal curing of BCB dielectric,” IEEE Transactions on Components, Hybrids, and manufacturing technology, Vol. 16, (1993) pp.4651.
    42. P. H. Townsend, D. Schmidt, T. M. Stokich, S. Kisting, D. C. Burdeaux, D. Frye, M. Bernius, M. Lanka, and K. Berry, “Adhesion of CYCLOTENETM (BCB) coatings on silicon substrates,” Proc. Material Research Society (MRS), Vol. 323 (1994) pp.365-370.
    43. A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B.34, 1865, (1988).
    44. T. C. Paulick, “ Inversion of normal-incidence (R, T) measurements to obtain n+ i k for thin films,” Appl. Opt. 25, 562 (1986).
    45. L. S. Juang, W. W. Lee, C. L. Chang, and C. H. Ho, “A novel adhesion measurement of low-k materials for ULSI,” Proc. of VLSI Multilevel Interconnection Conference (VMIC), (2000) pp.417-419.
    46. Jung Gyu Song, Choon Kun Ryu, Heon-Do Kim, Si-Bum Kim, Chung Tae Kim, and Jeong Mo Hwang, “Study on adhesion properties of low dielectric constant films by stud pull and modified edge lift-off test,” Proc. of the International Interconnect Technology Conference (IITC), (2000) pp.55-57.
    47. Sudhakar Allada, “Low K Adhesion Issues in Cu/Low K Integration,” Proc. of the International Interconnect Technology Conference (IITC), pp.161-163 (1999).
    48. Y. Matsubara, K. Endo, T. Tatsumi, and T. Horiuchi, “Adhesion of a-C:F during oxygen plasma annealing,” Proc. Material Research Society (MRS), Vol. 476 (1997) pp.19-24.
    49. Ian Morey, Ashish Asthana, “Etch challenges of low-k dielectrics,” Solid State Technology, (1999) pp.71-78.
    50. Brett Cruden, Karen Chu, Karen Gleason, Herbert Sawin, “Thermal decomposition of low-k pulsed plasma fluorocarbon films,” Proc. of the International Interconnect Technology Conference (IITC), (1999) pp.155-157.
    51. F. Dohmen and G Elmendortf, “Effect of Polysubstrate Properties and Process Conditions upon Adhesion of BARC,” OCG Interface 95, San Diego.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE