研究生: |
吳宣澤 Wu, Shiuan-Tze |
---|---|
論文名稱: |
A Technicolor Approach to Dissect Neuronal Architecture in Drosophila 利用多重螢光蛋白技術研究果蠅神經系統 |
指導教授: |
江安世
Chiang, Ann-Shyn |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 彩虹腦 |
外文關鍵詞: | Brainbow, neural circuitry map |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Normal brain functions depend critically upon circuit connections and synaptic architectures for information processing. Drosophila model system along with its intricate genetic tool box provides an unprecedented opportunity to understand how neural circuits orchestrating complex behaviors. A key step towards this goal is to generate a map of neuron-to-neuron connections. In this study, we begin to develop a technique called “Brainbow” to create a stochastic expression of multiple copies of fluorescence proteins (XFPs) under GAL4/UAS control, yielding combinatorial XFP expressions in the Drosophila central nervous system. We found that strong XFP expression and high detection sensitivity were essential for proper Brainbow imaging. Several proof-of-concept applications to illustrate intricate structures with Brainbow imaging were given. Brainbow technique demonstrated a way not only to discriminate adjacent neurons in defined group of cells but also to trace neural circuits. Our final goal is to reconstruct a neural circuitry map of brainwide connections in Drosophila.
許多在生物體內的功能機制往往是建構在精密的組織結構上,對於神經系統來說更是如此。神經系統有著極為複雜的網路結構,在生物體內負責處理及整合資訊,並且傳遞資訊到各處來協調各區不同的功能性。為了讓我們更容易剖析中樞神經系統的結構及功能性,我們選擇了基因工具非常發達的果蠅來作為模式生物進行實驗。在這篇研究中,我們使用了「彩虹腦」這個基因轉殖技術來區分果蠅體內不同的神經細胞。經由多種不同顏色螢光蛋白的排列組合,我們有機會賦予每一顆細胞不同的顏色,藉此看清楚神經細胞與其他組織的結構及連結性。除此之外,我們也利用多色螢光技術完成追蹤細胞突觸的工作,這是都是使用單色螢光標定難以達到的目標。在未來基因轉殖技術和影像分析軟體的進步下,我們之後的研究目標是利用這個新技術去建構整隻果蠅的神經網路圖譜。
Anderson, C.R., and Edwards, S.L. (1994). Intraperitoneal injections of Fluorogold reliably labels all sympathetic preganglionic neurons in the rat. J Neurosci Methods 53, 137-141.
Basler, K., and Struhl, G. (1994). Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208-214.
Briggman, K.L., and Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 16, 562-570.
Callahan, C.A., Yoshikawa, S., and Thomas, J.B. (1998). Tracing axons. Curr Opin Neurobiol 8, 582-586.
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802-805.
Clyne, J.D., and Miesenbock, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354-363.
Demir, E., and Dickson, B.J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785-794.
Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2, e329.
Fischer, J.A., Giniger, E., Maniatis, T., and Ptashne, M. (1988). GAL4 activates transcription in Drosophila. Nature 332, 853-856.
Gan, W.B., Grutzendler, J., Wong, W.T., Wong, R.O., and Lichtman, J.W. (2000). Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219-225.
Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187-1203.
Kimura, K., Ote, M., Tazawa, T., and Yamamoto, D. (2005). Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438, 229-233.
Lai, S.L., and Lee, T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9, 703-709.
Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
Lee, T., and Luo, L. (2001). Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24, 251-254.
Levis, R., Hazelrigg, T., and Rubin, G.M. (1985). Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558-561.
Lichtman, J.W., Livet, J., and Sanes, J.R. (2008). A technicolour approach to the connectome. Nat Rev Neurosci 9, 417-422.
Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell 128, 1205-1217.
Liu, L., Li, Y., Wang, R., Yin, C., Dong, Q., Hing, H., Kim, C., and Welsh, M.J. (2007). Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450, 294-298.
Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes, J.R., and Lichtman, J.W. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56-62.
Magrassi, L., Purves, D., and Lichtman, J.W. (1987). Fluorescent probes that stain living nerve terminals. J Neurosci 7, 1207-1214.
Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E., and Perrimon, N. (2008). Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40, 476-483.
Olsen, S.R., and Wilson, R.I. (2008). Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci 31, 512-520.
Rubin, G.M., and Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348-353.
Ryner, L.C., Goodwin, S.F., Castrillon, D.H., Anand, A., Villella, A., Baker, B.S., Hall, J.C., Taylor, B.J., and Wasserman, S.A. (1996). Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079-1089.
Simpson, J.H. (2009). Mapping and manipulating neural circuits in the fly brain. Adv Genet 65, 79-143.
Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L., and Dickson, B.J. (2005). Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795-807.
Su, C.Y., Menuz, K., and Carlson, J.R. (2009). Olfactory perception: receptors, cells, and circuits. Cell 139, 45-59.
Wong, A.M., Wang, J.W., and Axel, R. (2002). Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229-241.
Yeh, E., Gustafson, K., and Boulianne, G.L. (1995). Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A 92, 7036-7040.
Young, P., and Feng, G. (2004). Labeling neurons in vivo for morphological and functional studies. Curr Opin Neurobiol 14, 642-646.
Yu, H.H., Chen, C.H., Shi, L., Huang, Y., and Lee, T. (2009). Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12, 947-953.