研究生: |
蘇奕安 Su, I-An |
---|---|
論文名稱: |
新型耐火 Ti-Zr基中熵及高熵合金之開發 Development of new refractory Ti-Zr-base medium- and high-entropy alloys |
指導教授: |
葉均蔚
Yeh, Jien-Wei |
口試委員: |
李勝隆
洪健龍 楊智超 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 169 |
中文關鍵詞: | 高熵合金 、耐火合金 、雙相合金 、析出強化 、介穩相工程 、相變化探討 |
外文關鍵詞: | high entropy alloy, refractory alloy, dual phase alloy, precipitate hardening, meta stable engineering, phase transformation in high entropy alloy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2010年美國空軍實驗室提出了數款由 耐火元素組成之 BCC耐火 合 金,如 MoNbTaVW與 HfNbTaTiZr,前者具有很高的密度 ,前者具有很高的密度 但延展性不佳, 延展性不佳, 後者密度較高但延展性表現優異,不過中溫區段易有析出物因此 後者密度較高但延展性表現優異,不過中溫區段易有析出物因此 後者密度較高但延展性表現優異,不過中溫區段易有析出物因此 後者密度較高但延展性表現優異,不過中溫區段易有析出物因此 後者密度較高但延展性表現優異,不過中溫區段易有析出物因此 較容易產生脆性。
於鈦合金當中則是利用析出物強化使度大量提升,並且可以透過 於鈦合金當中則是利用析出物強化使度大量提升,並且可以透過 於鈦合金當中則是利用析出物強化使度大量提升,並且可以透過 於鈦合金當中則是利用析出物強化使度大量提升,並且可以透過 介穩相的成核位置, 適當析出若設計得還可產生變化之現象介穩相的成核位置, 適當析出若設計得還可產生變化之現象介穩相的成核位置, 適當析出若設計得還可產生變化之現象介穩相的成核位置, 適當析出若設計得還可產生變化之現象介穩相的成核位置, 適當析出若設計得還可產生變化之現象介穩相的成核位置, 適當析出若設計得還可產生變化之現象介穩相的成核位置, 適當析出若設計得還可產生變化之現象如形狀記憶合金,使應變硬化能力提升因此在鈦中的強機制是 如形狀記憶合金,使應變硬化能力提升因此在鈦中的強機制是 如形狀記憶合金,使應變硬化能力提升因此在鈦中的強機制是 如形狀記憶合金,使應變硬化能力提升因此在鈦中的強機制是 如形狀記憶合金,使應變硬化能力提升因此在鈦中的強機制是 如形狀記憶合金,使應變硬化能力提升因此在鈦中的強機制是 如形狀記憶合金,使應變硬化能力提升因此在鈦中的強機制是 十分多元且複雜的,但因如此就能有許運用手段及方法。
本研究 由 HfTiZr中熵合金 開始, 開始, 開始, 做適當元素的 添加至 高熵合金 高熵合金 ,利 用滾壓及再 結晶以及時效 處理 ,探討 相轉換 及拉伸性質的關聯 ,提出動 力學 模型 並建立最佳化製程以改進強度 及韌性。可得到抗拉並建立最佳化製程以改進強度 及韌性。可得到抗拉並建立最佳化製程以改進強度 及韌性。可得到抗拉及伸長 率 1085 MPa-3%、900 MPa-9%及 704 MPa-17.5%之合金 。
High-entropy alloys have attracted much attention since 2004. Many kinds of HEAs have been published. Among these, several BCC refractory HEAs were first reported by Senkov and Miracle in 2010. HfNbTaTiZr HEA shows enough strength and good ductility at room temperature. But it suffers brittleness due to the precipitation in 600 Celsius degrees. How to control the precipitation morphology is an important issue.
In contrast to HfNbTaTiZr alloy, titanium alloys can be precipitation hardened to enhance the strength dramatically. The phase transformation can be controlled. Omega precipitates can be utilized as nucleation sites for alpha precipitation to improve the strength and ductility.
This research combines high-entropy alloy’s advantages and titanium’s ones to develop new refractory alloys based on Ti-Zr. Through proper heat treatment, tensile strength-elongation of new alloys could be 1085 MPa-3%、 900 MPa-9% and 704 MPa-17.5%.
[1] Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., and Chang S.Y., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
[2] Miracle D.B. and Senkov O.N., A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
[3] Miracle D., Miller J., Senkov O., Woodward C., Uchic M., and Tiley J., Exploration and Development of High Entropy Alloys for Structural Applications. Entropy, 2014. 16(1): p. 494-525.
[4] Senkov O.N., Senkova S.V., Woodward C., and Miracle D.B., Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): p. 1545-1557.
[5] Senkov O.N., Wilks G.B., Scott J.M., and Miracle D.B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706.
[6] Senkov O.N., Scott J.M., Senkova S.V., Meisenkothen F., Miracle D.B., and Woodward C.F., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): p. 4062-4074.
[7] Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., and Woodward C.F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048.
[8] Stepanov N.D., Yurchenko N.Y., Zherebtsov S.V., Tikhonovsky M.A., and Salishchev G.A., Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters, 2018. 211: p. 87-90.
[9] Kolli R. and Devaraj A., A Review of Metastable Beta Titanium Alloys. Metals, 2018. 8(7).
[10] Banerjee D. and Williams J.C., Perspectives on Titanium Science and Technology. Acta Materialia, 2013. 61(3): p. 844-879.
[11] Donachie M.J., Titanium: A Technical Guide, 2nd Edition.
[12] Smith W.F., Structure and Properties of Engineering Alloys.
[13] Abdel-Hady M., Phase stability change with Zr content in b-type Ti–Nb alloys. 2007.
[14] Jin Y.X., Li K.Y., Chen H.M., and Xiang H.F., Effect of Rolling Process on Microstructure and Texture of Cold Rolled Ti-6Al-4V Seamless Tubes. Advanced Materials Research, 2012. 557-559: p. 191-197.
[15] da Rocha S.S., Adabo G.L., Henriques G.E., and Nobilo M.A., Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments. Braz Dent J, 2006. 17(2): p. 126-9.
[16] ATI Ti-6Al-4V, Grade 5.
[17] Pinke P. and Réger M., HEAT TREATMENT OF THE CASTED Ti6Al4V TITANIUM ALLOY TEPELNÉ SPRACOVANIE LIATEJ TITÁNOVEJ ZLIATINY Ti6Al4V.
[18] Li Z., Zheng B., Kurmanaeva L., Zhou Y., Valiev R.Z., and Lavernia E.J., High-strain induced reverse martensitic transformation in an ultrafine-grained Ti-Nb-Ta-Zr alloy. Philosophical Magazine Letters, 2016. 96(5): p. 189-195.
[19] Yeh J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013. 65(12): p. 1759-1771.
[20] Yeh J.-W., Physical Metallurgy of High-Entropy Alloys. Jom, 2015. 67(10): p. 2254-2261.
[21] Jien-Wei Y.J.A.C.S.M., Recent progress in high entropy alloys. 2006. 31(6): p. 633-648.
[22] Yeh J.-W., Chang S.-Y., Hong Y.-D., Chen S.-K., and Lin S.-J., Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 2007. 103(1): p. 41-46.
[23] Sheikh S., Shafeie S., Hu Q., Ahlström J., Persson C., Veselý J., Zýka J., Klement U., and Guo S., Alloy design for intrinsically ductile refractory high-entropy alloys. Journal of Applied Physics, 2016. 120(16).
[24] N.D.Stepanov, Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters 211 (2018) 87–90.
[25] Reed-Hill R.E. and Abbaschian R., Physical Metallurgy Principles. 1992: PWS-Kent Pub.
[26] Ivasishin O.M., Markovsky P.E., Matviychuk Y.V., Semiatin S.L., Ward C.H., and Fox S., A comparative study of the mechanical properties of high-strength β-titanium alloys. Journal of Alloys and Compounds, 2008. 457(1-2): p. 296-309.
[27] Song R., Ponge D., Raabe D., Speer J.G., and Matlock D.K., Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Materials Science and Engineering: A, 2006. 441(1-2): p. 1-17.
[28] Mignanelli P.M., Jones N.G., Pickering E.J., Messé O.M.D.M., Rae C.M.F., Hardy M.C., and Stone H.J., Gamma-gamma prime-gamma double prime dual-superlattice superalloys. Scripta Materialia, 2017. 136: p. 136-140.
[29] Porter D.A., Easterling K.E., and Sherif M., Phase Transformations in Metals and Alloys, (Revised Reprint). 2009: CRC press.
[30] Li Z., Pradeep K.G., Deng Y., Raabe D., and Tasan C.C., Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016. 534(7606): p. 227-30.
[31] Huang H., Wu Y., He J., Wang H., Liu X., An K., Wu W., and Lu Z., Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering. Adv Mater, 2017. 29(30).
[32] Abdel-Hady M., Hinoshita K., and Morinaga M., General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scripta Materialia, 2006. 55(5): p. 477-480.
[33] Takeuchi A. and Inoue A., Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 2005. 46(12): p. 2817-2829.
[34] Davis J.R., ASM handbook. Vol. 2. 1990: ASM International.
[35] Raabe D. introduction to Titanium Alloys. Available from: http://www.dierk-raabe.com/titanium-alloys/.
[36] 阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討. 2016.
[37] Sikka S., Vohra Y., and Chidambaram R.J.P.i.M.S., Omega phase in materials. 1982. 27(3-4): p. 245-310.
[38] Hickman B.J.J.o.M.S., The formation of omega phase in titanium and zirconium alloys: A review. 1969. 4(6): p. 554-563.
[39] Li T., Kent D., Sha G., Stephenson L.T., Ceguerra A.V., Ringer S.P., Dargusch M.S., and Cairney J.M., New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Materialia, 2016. 106: p. 353-366.