簡易檢索 / 詳目顯示

研究生: 戴志偉
Dai, Jhih-Wei
論文名稱: 用於直流微電網與電動車執行連網操作具輔助充電源之蓄電池儲能系統
A BATTERY ENERGY STORAGE SYSTEM WITH AUXILIARY CHARGING SOURCE FOR DC MICRO-GRID AND ELECTRIC VEHICLE TO PERFORM GRID-CONNECTED OPERATION
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 廖聰明
陳盛基
劉添華
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 208
中文關鍵詞: 蓄電池儲能系統直流微電網切換式整流器直流/直流轉換器共振式獨立操控連網操控電動車輛數位信號處理器
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文旨在開發一蓄電池儲能系統及從事其操控。所建蓄電池儲能
    系統之400V 直流鏈係由96V 蓄電池經一雙向交錯式直流/直流轉換器升
    壓調控建立之。而雙向變頻器再將直流鏈轉換成具有良好波形品質之三
    相交流電壓。藉由相同之變頻器及直流/直流轉換器,交流電網亦可經直
    流鏈對蓄電池充電。另外,可取用之再生或分散式能源可經所開發之可
    插式交流/直流轉換器向蓄電池組進行補充電,此交流直流轉換器由三相
    單開關切換式整流器及共振式隔離直流/直流轉換器組成。電池之補助充
    電亦可由可取得之直流源(如直流微電網)介接至蓄電池儲能系統或插入
    式交流/直流轉換器之直流鏈。
    透過適當的控制安排,所建蓄電池儲能系統具有電力潮流調控與主
    動濾波結合功能。在獨立操控模式,蓄電池儲能系統之變頻器可在未知
    與非線性負載下,產生良好波形品質及電壓調節之三相電壓。於孤島狀
    況下,蓄電池儲能系統可如同不斷電系統般提供負載不斷電電源。而蓄
    電池儲能系統在連網操控上可操控於三種模式:(i)浮接模式:所有區域
    負載之實功均由傳統電網供給,負載之虛功與諧波功由蓄電池儲能系統
    補償;(ii)放電模式:所有負載之實功、虛功與諧波功由蓄電池儲能系統
    提供。此外,亦可回送規劃之功率至傳統電網;(iii)充電模式:傳統電網
    向蓄電池充電,並供給區域性負載之實功,但所有區域負載之虛功與諧
    波功仍由蓄電池儲能系統提供。
    蓄電池儲能系統可接至電動車輛或微電網,執行其間之雙向電力潮
    流控制。透過蓄電池儲能系統之雙向變頻器,可執行下列之可能:(i)蓄
    電池儲能系統對電動車輛/電動車輛對蓄電池儲能系統或蓄電池儲能系統
    對微電網/微電網對蓄電池儲能系統;(ii)電動車輛對市電/市電對電動車
    輛;(iii)微電網對市電/市電對微電網。所有現成電力電路及其控制機構均
    妥予設計,其控制法則均以數位信號處理器全數位化實現,並以一些模
    擬與實測結果顯示所建系統之操作性能。


    目錄 誌謝 .................................................................................i 摘要 .................................................................................ii 目錄 ...........................................................................................iii 第一章、簡介 .............................................................................iv 第二章、微電網電力系統之基本原理 ..........................................v 第三章、低頻隔離式雙向三相變頻器之開發及其自主性操作 .......vi 第四章、雙向三相變頻器在微電網與傳統電網間之連網操作 .......vii 第五章、可插式三相交/直流轉換器之開發 ..................................viii 第六章、結論 .............................................................................ix 附錄:英文論文 ..................................................................................................xi

    REFERENCES
    A. Green Energy and Micro-grid Systems
    [1] G. M. Masters, Renewable and efficient electric power systems, Wiley-Interscience,
    New Jersey, 2004.
    [2] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power
    Energy Mag., vol. 5, no. 4, pp. 78-94, 2007.
    [3] F. Blaabjerg, R. Teodorescu, M. Liserre and A.V. Timbus, “Overview of control and
    grid synchronization for distributed power generation systems,” IEEE Trans. Ind.
    Electron., vol. 53, no. 5, pp. 1398-1409, 2006.
    [4] Y. W. Li, D. M. Vilathgamuwa and P. C. Loh, “A grid-interfacing power quality
    compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power
    Electron., vol. 21, no. 4, pp. 1021-1031, 2006.
    [5] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC micro-grid for super high quality
    distribution-system configuration and control of distributed generations and energy
    storage devices,” in Proc. IEEE PESC, pp. 1-7, 2006.
    [6] H. Kakigano, Y. Miura, T. Ise, R. Uchida, “DC voltage control of the DC micro-grid for
    super high quality distribution,” Power Conversion Conference, Nagoya, April 2-5, pp.
    518-525, 2007.
    [7] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON,
    pp. 635-642, 2007.
    [8] P. Biczel, “Power electronic converters in DC micro-grid,” in Proc. IEEE CPE, pp. 1-6,
    2007.
    [9] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi, and R. Yokoyama, “Power
    electronics and its applications to renewable energy in Japan,” IEEE Circuits Syst.
    Mag., vol. 8, no. 3, pp. 52-66, 2008.
    [10] J. M. Guerrero, J. C. Vasquez, J. Matas, L. García de Vicuña and M. Castilla,
    “Hierarchical control of droop-controlled AC and DC microgrids- a general approach
    toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2010.
    [11] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based
    common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp.
    2512-2527, 2011.
    [12] I. J. Balaguer, Q. Lei, S. Yang and U. Supatti and F. Z. Peng, “Control for gridconnected
    and intentional islanding operations of distributed power generation,” IEEE
    Trans. Ind. Electron., vol. 58, no. 1, pp. 147-157, 2011.
    [13] A. Kahrobaeian and Y. A.-R. I. Mohamed, “Interactive distributed generation interface
    for flexible micro-grid operation in smart distribution systems,” IEEE Trans.
    Sustainable Energy, vol. 3, no. 2, pp. 295-305, 2012.
    [14] M. Saghaleini and B. Mirafzal, “Reactive power control in three-phase grid connected
    current source boost inverter,” in Prol. IEEE APEC, pp. 904-910, 2012.
    201
    B. Energy Storage Devices
    [15] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE Ind. Electron. Mag., vol. 5,
    no. 1, pp. 27-35.
    [16] R. Yokoyama, Y. Hida, K. Koyanagi and K. Iba, “The role of battery systems and
    expandable distribution networks for smarter grid,” in Proc. IEEE PESGM., pp. 1-6,
    2011.
    [17] L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled
    battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp.
    236-243, 2005.
    [18] J. Bauman and M. Kazerani, “A comparative study of fuel-cell-battery, fuel-cellultracapacitor,
    and fuel-cell-battery-ultracapacitor vehicles,” IEEE Trans. Veh.
    Technol., vol. 57, no. 2, pp. 760-769, 2008.
    [19] A. Abedini and A. Nasiri, “Applications of super capacitors for PMSG wind turbine
    power smoothing,” in Proc. IEEE IECON., pp. 3347-3351, 2008.
    [20] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing
    using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind.
    Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
    [21] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M.
    Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system
    description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157,
    2007.
    [22] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel
    based energy storage system,” in Proc. Int. Conf. Power Engineering Energy and
    Electrical Drives, pp. 1-6, 2011.
    C. Battery Energy Storage Systems
    [23] C. M. Liaw, T. H. Chen, S. J. Chiang, C. M. Lee and C. T. Wang, “Small battery
    storage system,” Proc. Inst. Elect. Eng., vol. 140, pt. B, no. 1, pp. 7-17, 1993.
    [24] S. J. Chiang, S. C. Hwang and C. M. Liaw, “Three-phase multi-functional battery
    energy storage system,” IEE Proceedings-Electric Power Applications., vol. 142, no.
    4, pp. 275-284, 1995.
    [25] C. M. Liaw, L. Jan, W. C. Wu and S. J. Chiang, “Operation control of paralleled
    three-phase battery energy storage system,” IEE Proceedings-Electric Power
    Applications., vol. 143, no. 4, pp. 317-322, 1996.
    [26] Z. Haihua, T. Bhattacharya, T. Duong and T. S. T. Siew, “Composite energy storage
    system involving battery and ultracapacitor with dynamic energy management in
    micro-grid applications,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923-930,
    2011.
    202
    [27] I. Vechiu, A. Etxeberria, H. Camblong and J. M. Vinassa, “Three-level neutral
    point clamped inverter interface for flow battery/supercapacitor nnergy storage
    system used for micro-grids,” 2011 2nd IEEE PES International Conference and
    Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 1-6, 2011.
    [28] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC micro-grid for super
    high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp.
    3066-3075, 2010.
    [29] S. Kai, Z. Li, X. Yan and J. M. Guerrero, “A distributed control strategy based on DC
    bus signaling for modular photovoltaic generation systems with battery energy
    storage,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 3032-3045, 2011.
    [30] M. B. Delghavi and A. Yazdani, “A unified control strategy for electronically
    interfaced distributed energy resources,” IEEE Trans. Power Delivery, vol. 27, no. 2,
    pp. 803-812, 2012.
    [31] S. X. Chen, H. B. Gooi and M. Q. Wang, “Sizing of energy storage for microgrids,”
    IEEE Trans. Smart Grid,. vol. 3, no. 1, pp. 142-151, 2012.
    [32] S. D. G. Jayasinghe, D. M. Vilathgamuwa and U. K. Madawala, “Dual inverter based
    battery energy storage system for grid connected photovoltaic systems,” IECON
    2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 3275-3280,
    2010.
    [33] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama,
    “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE
    Trans. Smart Grid,. vol. 3, no. 1, pp. 559-564, 2012.
    [34] L. Roggia, C. Rech, L. Schuch, J. E. Baggio, H. L. Hey and J. R. Pinheiro, “Design of
    a sustainable residential microgrid system including PHEV and energy storage
    device,” Proceedings of the 2011-14th European Conference on Power Electronics
    and Applications (EPE 2011), pp. 1-9, 2011.
    D. PWM Inverters
    [35] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors,
    Pergamon Press, Oxford, 1988.
    [36] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall,
    2002.
    [37] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters,
    Applications and Design, New York: John Wiley & Sons, 2003.
    [38] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of
    single-phase inverters for small distributed power generators: an overview,” IEEE
    Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [39] M. B. de Correa, C. B. Jacobina, E. R. C. da Silva and A. M. N. Lima, “A general
    PWM strategy for four-switch three-phase inverters,” IEEE Trans. Power Electron.,
    vol. 21, no. 6, pp. 1618-1627, Nov. 2006.
    [40] T. Kominami and Y. Fujimoto, “A novel nine-switch inverter for independent control
    of two three-phase loads,” in Proc. IEEE IAS, 2007, pp. 2346-2350.
    203
    [41] Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE
    Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
    [42] B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost
    inverter-topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
    [43] D. Yazdani, S. Ali Khajehoddin, A. Bakhshai, and G. Joos, “Full utilization of the
    inverter in split-phase drives by means of a dual three-phase space vector
    classification algorithm,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 120-129, Jan.
    2009.
    [44] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy
    implementation features for three-phase, three-wire voltage-source inverters,” IEEE
    Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
    [45] A. Shukla, A. Ghosh and A. Joshi, “Hysteresis modulation of multilevel inverters,”
    IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1396-1409, 2011.
    [46] N. Yousefpoor, S.H. Fathi, N. Farokhnia and H.A. Abyaneh, “THD minimization
    applied directly on the line-to-line voltage of multilevel Inverters,” IEEE Trans Ind.
    Electron., vol. 59, no. 1, pp. 373-380, 2012.
    E. Key Issues of PWM Inverters
    PWM switching methods:
    [47] J. Holtz, “Pulse width modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no.
    5, pp. 410-420, 1992.
    [48] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods
    for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp.
    49-61, 1999.
    [49] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM
    problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp.
    465-475, 2002.
    [50] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control
    techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007.
    [51] V. Blasko, “A novel method for selective harmonic elimination in power electronic
    equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007.
    [52] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase
    voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5,
    pp. 691-703, 1998.
    [53] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed
    electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 60-70,
    1999.
    [54] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with
    fixed switching frequency,” IEE Proc. Elect. Power Appl., vol. 148, no. 6, pp.
    503-512, 2001.
    204
    [55] Y. Kobayashi and H. Funato, “Current control method based on hysteresis control
    suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, pp.
    479-484, 2008.
    [56] R. Ramchand, K. Sivakumar, A. Das, C. Patel and K. Gopakumar, “Improved
    switching frequency variation control of hysteresis controlled voltage source
    inverter-fed IM drives using current error space vector,” IET Proc. Power Elect., vol.
    3, no. 2, pp. 219-231, 2010.
    [57] D. G. Holmes, R. Davoodnezhad and B. P. McGrath, “An improved three phase
    variable band hysteresis current regulator,” in Proc. IEEE ICPE & ECCE, pp.
    2274-2281, 2011.
    [58] R. Gupta, “Generalized frequency domain formulation of the switching frequency
    for hysteresis current controlled VSI used for load compensation,” IEEE Trans.
    Power Electron., vol. 27, no. 5, pp. 2526-2535, 2012.
    [59] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and
    design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE
    PESC, vol. 2, pp. 17-21, 2001.
    [60] F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation
    predictive current control method for the asymmetrical dual three-phase induction
    machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009.
    Effects of dead time:
    [61] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for
    open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp.
    683-689, 1999.
    [62] A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time
    compensation for sinusoidal PWM inverters operating at high switching frequencies,”
    IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007.
    [63] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM
    inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
    [64] D. Limon, M. Pomar, J. E. Normey-Rico, T. L. M. Santos and E. F. Camacho,
    “Robust design of dead-time compensator controllers for constrained non-linear
    systems,” IEEE CDC-ECC, pp. 2022-2027, 2011.
    Output filter:
    [65] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for
    single-phase PWM inverters,” in Proc. IEEE PEDS, vol. 2, pp. 571-576, 1995.
    [66] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter
    considering the performance of controller,” in Proc. ICPST, vol. 3, pp. 1659-1664,
    2000.
    [67] T. G. Habetler, R. Naik and T. A. Nondahl, “Design and implementation of an inverter
    output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no.
    3, pp. 327-331, 2002.
    205
    DC-link ripples:
    [68] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input
    DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, vol. 4, pp.
    65-70, 1993.
    [69] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for
    inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron.,
    vol. 7, no. 1, pp. 65-70, 1993.
    [70] F. Blaabjerg, D. Neacsu and J. K. Pedersen, “Adaptive SVM to compensate DC-link
    voltage ripple for component minimized voltage source inverters,” in Proc. IEEE
    PESC, 1997, vol. 1, pp. 580-589.
    [71] X. Ding, Z. Qian, S. Yang, and F. Z. Peng, “A new feed-forward compensation to
    reject DC-link voltage ripple in bi-directional Z-source inverter ASD system,” in
    Proc. Twenty-Third Annual IEEE Applied Power Electronics Conference and
    Exposition APEC, pp. 1809–1813, 2008.
    [72] J. Sebasti, D. G. Lamar, M. M. Hernando, A. Rodriguez-Alonso and A. Fernandez,
    “Steady-state analysis and modeling of power factor correctors with appreciable
    voltage ripple in the output-voltage feedback loop to achieve fast transient response,”
    IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2555-2566, 2009.
    Transformer imbalance:
    [73] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in
    sinusoidal wave inverter,” in Proc. IEEE IPEMC, 2000, vol. 3, pp. 1122-1126.
    [74] M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave
    inverters,” in Proc. IEEE APEC, 2004, vol. 3, pp. 1709-1713.
    [75] H. Lavric and R. Fiser, “Flux balance assurance in output transformers of sine-wave
    inverters using DC autonulling control principle,” in Proc. EPE-PEMC, pp. 218-221,
    2006.
    F. Switch-Mode Rectifiers
    [76] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A
    review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind.
    Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [77] H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance
    three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no.
    4, pp. 437-446, 1997.
    [78] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A
    review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind.
    Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [79] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor
    preregulator under variable switching frequency and discontinuous input current,” in
    Proc. IEEE PESC, 1993, pp. 657-662.
    206
    [80] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC
    rectifier,” in Proc. IEEE APEC, 1997, vol. 2, pp. 895-901.
    [81] J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase
    high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334,
    1998.
    [82] Z. Z. Ye and M. M. Jovanovic, “Implementation and performance evaluation of
    DSP-based control for constant-frequency discontinuous-conduction-mode boost PFC
    front end,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 98-107, 2005.
    [83] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive
    with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power
    Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
    [84] J. W. Kolar, H. Ertl and F. C. Zach, “Design and experimental investigation of a
    three-phase high power density high efficiency unity power factor PWM (VIENNA)
    rectifier employing a novel integrated power semiconductor module,” in Proc. APEC,
    1996, vol. 2, pp. 514-523.
    [85] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear
    control technique based on experimentally validated small-signal model of threephase
    three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no.
    4, pp. 1666-1676, 2008.
    [86] B. Tamyurek, A. Ceyhan, E. Birdane and F. Keles, “A simple DSP based control
    system design for a three-phase high power factor boost rectifier,” in Proc. IEEE
    APEC, 2008, pp. 1416-1422.
    [87] R. Ghosh and G. Narayanan, “Control of three-phase, four-wire PWM rectifier,” IEEE
    Trans. Power Electron., vol. 23, no. 1, pp. 96-106, 2008.
    [88] R. L. Alves and I. Barbi, “Analysis and implementation of a hybrid high-power-factor
    three-phase unidirectional rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp.
    632-640, 2009.
    [89] A. Gensior, H. Sira-Ramirez, J. Rudolph and H. Guldner, “On some nonlinear current
    controllers for three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 2,
    pp. 360-370, 2009.
    G. Interface DC-DC Converters and Interleaved DC/DC Converters
    [90] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a
    buck-boost bidirectional DC-DC converter topology for electrical vehicle motor
    drives,” in Proc. IEEE APEC., pp. 887-892, 1995.
    [91] M. Jain, P. K. Jain and M. Daniele, “Analysis of a bi-directional DC-DC converter
    topology for low power application,” in Proc. IEEE CCECE., vol.2, pp. 548-551,
    1997.
    [92] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional
    buck-boost converter topologies for application in electrical vehicle motor drives,” in
    Proc. IEEE APEC, vol. 1, pp. 287-293, 1998.
    [93] K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters
    for electric and hybrid vehicles,” in Proc. IEEE VPPC, pp. 552-555, 2005,.
    207
    [94] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC
    converter with decoupled power flow management,” IEEE Trans. Power Electron.,
    vol. 23, no. 5, pp. 2443-2453, 2008.
    [95] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery
    powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no.
    4, pp. 2143-2156, 2008.
    [96] G. Calderon-Lopez, A.J. Forsyth and D.R. Nuttall, “Design and performance
    evaluation of a 10-kW interleaved boost converter for a fuel cell electric vehicle,”
    IEEE Power Electron., vol. 2, pp. 1-5, 2006.
    [97] L. Shuai, K. A. Corzine and M. Ferdowsi, “A new battery/ultracapacitor energy
    storage system design and its motor drive integration for hybrid electric vehicles,”
    IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
    [98] L. T. Jakobsen, O. Garcia, J. A. Oliver, P. Alou, J. A. Cobos, and M. A. E. Andersen,
    “Interleaved buck converter with variable number of active phases and a predictive
    current sharing scheme,” in Proc. IEEE Power Electron. Spec. Conf. Postsecondary
    Electron. Standard Council (PESC), 2008, pp. 3360–3365.
    [99] A. C. Schittler, D. Pappis, A. Campos, M. A. Dalla Costa and J. M. Alonso,”
    Interleaved buck converter applied to high power HID lamps supplying: Design,
    modeling and control,” IEEE IAS, pp. 1-7, 2011.
    H. HF Isolated Converter
    [100] “Half-bridge LLC resonant converter design using FSFR-series Fairchild power
    switch,” Available: http://www.fairchildsemi.com/an/AN/AN-4151.pdf.
    [101] R. Petkov, “Optimum design of a high-power, high-frequency transformer,” IEEE
    Trans. Power Electron., vol. 11, no. 1, pp. 33-42, 1996.
    [102] W. G. Hurley, W. H. Wolfle and J. G. Breslin, “Optimized transformer design:
    inclusive of high-frequency effects,” IEEE Trans. Power Electron., vol. 13, pp.
    651-659, 1998.
    [103] C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor
    correction and high frequency transformer link,” IEEE Trans. Power Electron., vol.
    15, no. 4, pp. 644-654, 2000.
    [104] P. K. Jain, K. Wen, H. Soin and Y. Xi, “Analysis and design considerations of a load
    and line independent zero voltage switching full bridge DC/DC converter topology,”
    IEEE Trans. Power Electron., vol. 22, no. 5, pp. 649-657, 2002.
    [105] G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge
    converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp.
    228-235, 2005.
    [106] J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC
    converters under transient conditions,” in Proc. APEC, 2006, pp. 523-527.
    [107] S. Inoue and H. Akagi, “A bidirectional isolated DC/DC converter as a core circuit of
    the next-generation medium-voltage power conversion system,” IEEE Trans. Power.
    Electron., vol. 22, no. 2, pp. 535-542, 2007.
    208
    [108] O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched isolated
    DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol.
    23, no. 5, pp. 2218-2229, 2008.
    [109] Z. Wang and H. Li, “Unified modulation for three-phase current-fed bidirectional
    DC-DC converter under varied input voltage,” in Proc. IEEE APEC, 2010, pp.
    807-812.
    [110] X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge
    series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp.
    850-862, 2010.
    [111] T. Jimichi, H. Fujita and H. Akagi, “A dynamic voltage restorer equipped with a
    high-frequency isolated DC-DC converter,” IEEE Trans. Ind. Appl., vol. 47, no. 1,
    pp.169-175, 2011.
    [112] R. Yu, G. K. Y. Ho, B. M. H. Pong, B. W.-K. Ling and J. Lam, “Computer-aided
    design and optimization of high-efficiency LLC series resonant converter,” IEEE
    Trans. Power Electron., vol. 27, no. 7, pp. 3243-3256, 2012.
    I. Others
    [113] “Digital signal controller TMS320F2812 datasheet,” Available: http://focus.ti.
    com/lit/ds/symlink /tms320f2812.pdf
    [114] ‘‘C28x IQmath Library-A Virtual Floating Point Engine,’’ Available: http://focus.ti.
    com/lit/sw /sprc990/sprc990.pdf
    [115] A. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power
    Del., vol. 16, no. 8, pp. 782-790, 2001.
    [116] R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power
    Systems Quality, 2nd ed., New York: McGraw-Hill, 2003.
    [117] J. Y. Huang, “Development of isolated three-phase inverter systems with switch mode
    rectifier front-ends,” Master Thesis, Department of Electrical Engineering NTHU,
    Hsinchu, ROC, 2010.
    [118] H. X. Lin, “Development of a bidirectional three-phase inverter and its operation
    control study between DC micro-grid and utility grid” Master Thesis, Department of
    Electrical Engineering NTHU, Hsinchu, ROC, 2011.
    [119] Y. W. Lin, “Development of a home micro-grid with multiple renewable source and
    energy storage devices” Master Thesis, Department of Electrical Engineering NTHU,
    Hsinchu, ROC, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE