研究生: |
洪渝銘 Hung, Yu-Ming |
---|---|
論文名稱: |
樟腦衍生之掌性催化劑於催化不對稱碳-碳鍵生成反應之研究 The Studies on Asymmetric Carbon-Carbon Bond Formation Reactions Catalyzed by Camphor-Derived Chiral Catalysts |
指導教授: |
汪炳鈞
Uang, Biing-Jiun |
口試委員: |
陳建添
Chen, Chien-Tien 陳榮傑 Chein, Rong-Jie 吳學亮 Wu, Hsyueh-Liang 陳貴通 Tan, Kui-Thong |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 317 |
中文關鍵詞: | 樟腦 、麥可加成反應 、羥醛反應 、安息香縮和反應 、有機催化 、不對稱催化 |
外文關鍵詞: | camphor, Michael reaction, aldol reaction, benzoin condensation, organocatalysis, asymmetric catalysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究樟腦衍生之掌性催化劑催化不對稱碳-碳鍵生成反應之研究。論文共分為三部分,第一部份在探討()-MINBOL 8與Ni(acac)2形成的掌性錯合物催化不對稱串聯麥可/麥可加成反應,可成功地得到66–84%的加成產物,非鏡像選擇性為>20:1,鏡像選擇性為91–97% ee。第二部份旨在將具有樟腦骨架之有機催化劑應用至催化醛類與炔基醛進行不對稱羥醛反應(aldol reaction),建立具光學活性的丙炔基醇。以5 mol%催化劑58進行催化反應時,得到anti位向為主產物,產率最高可達95%,鏡像選擇性anti : 91–99% ee; syn : 86–98% ee; 而以5 mol%之催化劑66進行催化反應時,得到syn位向為主產物,產率最高可達93%,鏡像選擇性anti : 82–90% ee; syn : 97–99.5% ee。第三部份則是設計且成功合成新型掌性三氮唑鹽97並應用至催化苯甲醛進行不對稱安息香縮合反應,可得到90%之產物以及67%的鏡像超越值。
This thesis reported the application of camphor-derived chiral catalysts in the asymmetric carbon-carbon bond forming reactions. In the first section, we demonstrated the in situ generated chiral complex from 12.5 mol% of (+)-MINBOL 8 and 0.5 mol% of Ni(acac)2 successfully catalyzed asymmetric tandem double Michael reactions. The tandem adducts were produced in high yields (66–84%) with excellent diastereoselectivities (>20:1) and high enantioselectivities (91–97% ee).The second section described the synthesis of the chiral propargylic alcohol by the cross-aldol reaction with alkynals catalyzed by camphor-derived organocatalysts. The reactions in the presence of 5 mol% catalyst 58 resulted in good yields (up to 95%) with moderate diastereoselectivities (anti:syn = 55:45–75:25) and high enantioselectivities (anti : 91–99% ee; syn : 86–98% ee). On the other hand, the reactions in the presence of 5 mol% catalyst 66 resulted in good yields (up to 93%) with good diastereoselectivities (anti:syn = 25:75–10:90) and high enantioselectivities (anti : 82–90% ee; syn : 97–99.5% ee).The final section focused on the design of novel chiral triazolium salt 97 and its application in the asymmetric benzoin condensation. The product was furnished in 90% yield with moderate enantioselectivity (67% ee).
[1] a) J. H. van’t Hoff, Arch. Neerl. Sci. Exactes Nat. 1874, 9, 445–454; b) J.-A. Le Bel, Bull. Soc. Chim. Fr. 1874, 22, 337–347.
[2] J. Seyden-penne. In〝Chiral Auxiliaries and Ligands in Asymmetric Synthesis〞, John-Wiley & Sons, New York, 1995.
[3] D. B. Calne, M. Sandlar, Nature 1970, 226, 21–24.
[4] S. C. Stinson, Chem. Eng. News 1992, 70, Steptember 28, 46–79.
[5] G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds., Stereoselective Synthesis, Houben-Weyl, 1995.
[6] For examples of using (−)-MITH as the catalyst, see: a) P.-Y. Wu, H.-L. Wu, B.-J. Uang, J. Org. Chem. 2006, 71, 833–835; b) H.-L. Wu, P.-Y. Wu, B.-J. Uang, J. Org. Chem. 2007, 72, 5935–5937; c) H.-L. Wu, P.-Y. Wu, Y.-Y. Shen, B.-J. Uang, J. Org. Chem. 2008, 73, 6445–6447; d) P.-Y. Wu, H.-L. Wu, Y.-Y. Shen, B.-J. Uang, Tetrahedron: Asymmetry 2009, 20, 1837–1841; e) Y.-N. Cheng, H.-L. Wu, P.-Y. Wu, Y.-Y. Shen, B.-J. Uang, Chem. Asian J. 2012, 7, 2921–2924; For examples of using (+)-MINBOL as the catalyst, see; f) Z.-L. Wu, H.-L. Wu, P.-Y. Wu, B.-J. Uang, Tetrahedron: Asymmetry 2009, 20, 1556–1560; g) C.-H. Tseng, Y.-M. Hung, B.-J. Uang, Tetrahedron: Asymmetry 2012, 23, 130–135; h) W.-M. Huang, B.-J. Uang, Chem. Asian. J. 2015, 10, 998–1003; For the development of new organocatalysts, see: i) Y.-C. Huang, B.-J. Uang, Chem. Asian. J. 2014, 9, 2444–2448.
[7] For selected examples, see: a) A. Alexakis, J. Frutos, P. Mangeney, Tetrahedron : Asymmetry 1993, 4, 2427–2430; b) A. H. M. de Vries, A. Meetsma, B. L. Feringa, Angew. Chem. Int. Ed. Engl. 1996, 35, 2374–2376; c) A. H. M. de Vries, B. L. Feringa, Tetrahedron : Asymmetry 1997, 8, 1377–1378; d) X. Hu, H. Chen, X. Zhang, Angew. Chem. Int. Ed. 1999, 38, 3518–3521; e) M. Kanai, K. Tomioka, Tetrahedron Lett. 1995, 36, 4275–4278; f) J. Spieler, O. Huttenloch, H. Waldmann, Eur. J. Org. Chem. 2000, 3, 391–399; g) H. Zhou, W.-H. Wang, Y. Fu, J.-H. Xie, W.-J. Shi, L.-X. Wang, Q.-L. Zhou, J. Org. Chem. 2003, 68, 1582–1584; h) K. Kawamura, H. Fukuzawa, M. Hayashi, Org. Lett. 2008, 10, 3509–3512; i) K. Endo, D. Hamada, S. Yakeishi, M. Ogawa, T. Shibata, Org. Lett. 2012, 14, 2342–2345; j) F. Ye, Z.-J. Zheng, W.-H. Deng, L.-S., Zheng, Y. Deng, C.-G. Xia, L.-W. Xu, Chem. Asian. J. 2013, 8, 2242–2253.
[8] For selected reviews and articles, see: a) H.-C. Guo, J.-A. Ma, Angew. Chem. Int. Ed. 2006, 45, 354–366; b) Z. Galeštoková, R. Šebesta, Eur. J. Org. Chem. 2012, 6688–6695; c) M. Kitamura, T. Miki, K. Nakano, R. Noyori, Tetrahedron Lett. 1996, 37, 5141–5144; d) B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos, A. H. M. de Vries, Angew. Chem. Int. Ed. Engl. 1997, 36, 2620–2623; e) E. Keller, J. Maurer, R. Nassz, T. Schader, A. Meetsma, B. L. Feringa, Tetrahedron: Asymmetry 1998, 9, 2409–2413; f) L. A. Arnold, R. Nassz, A. J. Minnard, B. L. Feringa, J. Org. Chem. 2002, 67, 7244–7254; g) R. Nassz, L. A. Arnold, M. Pineschi, E. Keller, B. L. Feringa, J. Am. Chem. Soc. 1999, 121, 1104–1105; h) S. J. Degrado, H. Mizutani, A. H. Hoveyda, J. Am. Chem. Soc. 2001, 123, 755–756; i) H. Mizutani, S. J. Degrado, A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 779–781; j) K. Oliver, A. Alexakis, Org. Lett. 2002, 4, 3835–3837; k) X. Rathgeb, S. March, A. Alexakis, J. Org. Chem. 2006, 71, 5737–5742; l) K. Agapiou, D. F. Cauble, M. J. Krische, J. Am. Chem. Soc. 2004, 126, 4528–4529; m) K. Li, A. Alexakis, Chem. Eur. J. 2007, 13, 3765–3771; n) S. Guo, Y. Xie, X. Hu, C. Xia, H. Huang, Angew. Chem. Int. Ed. 2010, 49, 2728–2731; o) S. Guo, Y. Xie, X. Hu, H. Huang, Org. Lett. 2011, 13, 5596–5599; p) C.-Y. Ni, S.-S. Kan, Q.-Z. Liu, T.-R. Kang, Org. Biomol. Chem., 2011, 9, 6211–6214; q) N. Germain, L. Guénée, M. Mauduit, A. Alexakis, Org. Lett. 2014, 16, 118–121; r) N. Germain, D. Schlaefli, M. Chellat, S. Rosset, A. Alexakis, Org. Lett. 2014, 16, 2006–2009; s) N. Germain, A. Alexakis, Chem. Eur. J. 2015, 21, 8597–8606.
[9] 陳安君碩士論文,國立清華大學化學系,2015年。
[10] 曾志豪博士論文,國立清華大學化學系,2011年。
[11] N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH, New York, 2001.
[12] a) A. G. M. Barret, G. G. Graboski, Chem. Rev. 1986, 86, 751–762; b) G. Yan, A. J. Borah, L. Wang, Org. Biomol. Chem. 2014, 12, 6049–6058; c) A. Z. Halimehjani, I. N. N. Namboothiri, S. E. Hooshmand, RSC Adv. 2014, 4, 31261–31299; d) A. Z. Halimehjani, I. N. N. Namboothiri, S. E. Hooshmand, RSC Adv. 2014, 4, 48022–48084.
[13] 吳志龍碩士論文,國立清華大學化學系,2005年。
[14] CCDC 993020 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
[15] Y.-M. Hung, C.-H. Tseng, B.-J. Uang, Tetrahedron : Asymmetry 2015, 26, 1369–1374.
[16] For selected reviews, see: a) G. Lu, Y.-M. Li, X.-S. Li, A. S. C. Chan, Coord. Chem. Rev. 2005, 249, 1736–1744; b) B. M. Trost, A. H. Weiss, Adv. Synth. Catal. 2009, 351, 963–983; c) P. G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem. 2004, 4095–4105; d) M. Turlington, L. Pu, Synlett 2012, 23, 649–684.
[17] K. Matsumura, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1997, 119, 8738–8739.
[18] B. M. Trost, B. Biannic, C. S. Brindle, B. M. O’Keefe, T. J. Hunter, M.-Y. Ngai, J. Am. Chem. Soc. 2015, 137, 11594–11597.
[19] D. Frantz, R. Fassler, E. Carreira, J. Am. Chem. Soc. 2000, 122, 1806–1807.
[20] B. D. Williams, A. B. Smith, J. Org. Chem. 2014, 79, 9284–9296.
[21] H.-L. Wu, P.-Y. Wu, B.-J. Uang, unpublished results.
[22] 吳平宇博士論文,國立清華大學化學系,2008年。
[23] For selected reviews and articles, see: a) P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 2004, 43, 5138–5175; b) P. I. Dalko, ed., Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Wiley-VCH, weinheim, 2013; c) B. List, Tetrahedron 2002, 58, 5573–5590; d) N. Momiyama, H. Torii, S. Saito, H. Yamamoto, Proc. Natl. Acad. Sci. 2004, 101, 5374–5378; e) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794–797; f) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212–4215; g) C.-L. Cao, M.-C. Ye, X.-L. Sun, Y. Tang, Org. Lett. 2006, 8, 2901–2904; h) S. P. Brown, N. C. Goodwin, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 1192–1194; i) P. Zhou, L. Zhang, S. Luo, J.-P. Cheng, J. Org. Chem. 2012, 77, 2526–2530; j) W. Notz, K. Sakthivel, T. Bui, G. Zhong, C. F. Barbas III, Tetrahedron Lett. 2001, 42, 199–201; k) Z. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y.-D. Wu, J. Am. Chem. Soc. 2003, 125, 5262–5263; l) W. Zhuang, T. B. Poulsen, K. A. Jørgensen, Org. Biomol. Chem. 2005, 3, 3284–3289; m) Y. Cheng, J. An, L.-Q. Lu, L. Luo, Z.-Y. Wang, J.-R. Chen, W.-J. Xiao, J. Org. Chem. 2011, 76, 281–284; n) T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119–125; o) R. P. Herrera, V. Sgarzani, L. Bernardi, A. Ricci, Angew. Chem. Int. Ed. 2005, 44, 6576–6579; p) P. Melchiorre, Angew. Chem. Int. Ed. 2012, 51, 9748–9770; q) M. Terada, K. Machioka, K. Sorimachi, Angew. Chem. Int. Ed. 2006, 45, 2254–2257; r) M. S. Kerr, J. R. de Alaniz, T. Rovis, J. Am. Chem. Soc. 2002, 124, 10298–10299.
[24] For selected reviews, see: a) D. W. C. MacMillan, Nature 2008, 455, 304–308; b) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. Int. Ed. 2008, 47, 6138–6171; c) A. Moyano, R. Rios, Chem. Rev. 2011, 111, 4703–4832; d) K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, K. A. Jørgensen, Acc. Chem. Res. 2012, 45, 248–264; e) C. M. R. Volla, I. Atodiresei, M. Rueping, Chem. Rev. 2014, 114, 2390–2431; f) B. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 13860–13874; g) B. M. Paz, H. Jiang, K. A. Jørgensen, Chem. Eur. J. 2015, 21, 1846–1853; h) S. Afewerki, A. Córdova, Chem. Rev. 2016, 116, 13512–13570.
[25] R. Mahrwald, ed., Modern Aldol Reactions, Wiley-VCH, Berlin, 2004.
[26] a) Z. G. Hajos, D. R. Parrish, German Pat. DE 2102623, 1971; b) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615–1621.
[27] E. Gómez-Bengoa, J. M. García, S. Jiménez, I. Lapuerta, A. Mielgo, J. M. Odriozola, I. Otazo, J. Razkin, I. Urruzuno, S. Vera, M. Oiarbide, C. Palomo, Chem. Sci. 2013, 4, 3198–3204.
[28] Y. Hayashi, M. Kojima, Y. Yasui, Y. Kanda, T. Mukaiyama, H. Shomura, D. Nakamura, Ritmaleni, I. Sato, ChemCatChem 2013, 5, 2887–2892.
[29] 葉祐成碩士論文,國立清華大學化學系,2009年。
[30] 麥正輝碩士論文,國立清華大學化學系,2012年。
[31] 黃昱超博士論文,國立清華大學化學系,2014年。
[32] 蔡文寬碩士論文,國立清華大學化學系,2014年。
[33] 吳欣宴碩士論文,國立清華大學化學系,2016年。
[34] a) P. Dziedzic, J. Vesely, A. Córdova, Tetrahedron Lett. 2008, 49, 6631–6634; b) P. Dziedzic, P. Schyman, M. Kullberg, A. Córdova, Chem. Eur. J. 2009, 15, 4044–4048.
[35] Y. Zhou, J. Dong, F. Zhang, Y. Gong, J. Org. Chem. 2011, 76, 588–600.
[36] a) M. B. Schmid, K. Zeitler, R. M. Gscheind, Chem. Sci. 2011, 2, 1793–1803; b) Y. Hayashi, D. Okamura, T. Yamazaki, Y. Ameda, H. Gotoh, S. Tsuzuki, T. Uchimaru, D. Seebach, Chem. Eur. J. 2014, 20, 17077–17088.
[37] a) G. Desiraju, T. Steiner, eds., The Weak Hydrogen Bond: In Structural Chemistry and Biology, Oxford Scholarship Online, Oxford, 2010; For selected reviews, see: b) M. S. Taylor, E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520–1543; c) A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713–5743; d) R. R. Knowles, E. N. Jacobsen, Proc. Natl. Acad. Sci. 2010, 107, 20678–20685; e) H. Jiang, Ł. Albrecht, K. A. Jørgensen, Chem. Sci. 2013, 4, 2287–2300; f) Ł. Albrecht, H. Jiang, K. A. Jørgensen, Chem. Eur. J. 2014, 20, 358–368; g) C. R. Kennedy, S. Lin, E. N. Jacobsen, Angew. Chem. Int. Ed. 2016, 55, 12596–12624.
[38] a) S. Kikuchi, S. Yoshida, Y. Sugawara, W. Yamada, H.-M. Cheng, K. Fukui, K. Sekine, I. Iwakura, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn. 2011, 84, 698–717; b) K. Sekine, T. Yamada, Chem. Soc. Rev. 2016, 45, 4524–4532.
[39] N. Marion, S. Díez-González, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988–3000.
[40] T. Ugai, S. Tanaka, S. Dokawa, J. Pharm. 1943, 53, 269–300.
[41] R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719–3726.
[42] J. Sheehan, D. H. Hunneman, J. Am. Chem. Soc. 1966, 88, 3666–3667.
[43] J. Sheehan, T. Hara, J. Org. Chem. 1974, 39, 1196–1199.
[44] D. Enders, T. Balensiefer, Acc. Chem. Res 2004, 37, 534–541.
[45] D. Enders, U. Kallfass, Angew. Chem. Int. Ed. 2002, 41, 1743–1745.
[46] Y. Ma, S. Wei, J. Wu, F. Yang, B. Liu, J. Lan, S. Yang, J. You, Adv. Synth. Catal. 2008, 350, 2645–2651.
[47] H. Takikawa, K. Suzuki, Org. Lett. 2007, 9, 2713–2716.
[48] K. C. Nicolaou, H. M. Li, A. L. Nold, D. Pappo, A. Lenzen, J. Am. Chem. Soc. 2007, 129, 10356–10357.
[49] H.-H. Liu, T.-Y. Chen, B.-J. Uang, J. Chin. Chem. Soc. 1992, 4, 359–360.
[50] 吳蕙玲碩士論文,國立清華大學化學系,2013年。
[51] D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307–9387.
[52] T.-H. Yan, V.-V. Chu, T.-C. Lin, C.-H. Wu, L.-H. Liu, Tetrahedrons Lett. 1991, 32, 4959–4962.
[53] a) H. U. Vora, S. P. Lathtop, N. T. Reynolds, M. S. Kerr, J. R. Alaniz, T. Rovis, Org. Synth. 2010, 87, 350–361; b) J. R. Struble, J. W. Bode, Org. Synth. 2010, 87, 362–376.
[54] 楊博堯碩士論文,國立清華大學化學系,2009年。
[55] D. Enders, K. Breuer, J. H. Teles, Helv. Chim. Acta. 1996, 79, 1217–1221.