簡易檢索 / 詳目顯示

研究生: 朱夏志
Chu, Hsia-Chih
論文名稱: 以往復式介電泳提升專一性T細胞捕捉效率之研究
A Study of Using A Reversible DEP to Improve the Specific T-Cell Capture Effciency
指導教授: 蘇育全
Su, Yu-Chuan
許博淵
Shew, Bor-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 56
中文關鍵詞: 專一性T細胞往復式介電泳細胞免疫捕捉螢光染色
外文關鍵詞: Specific T cell, reversible DEP technique, cell immuno-capture, fluorescence staining
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首次提出以周期性往復式弱介電泳(DEP)技術來提升混合細胞中專一性細胞的捕捉效率。正向介電泳將緩慢引導懸浮液中的細胞與固定化於聚酯纖維膜(PVDF)上的生物探針鍵結。實驗結果顯示出使用正向介電泳的細胞捕捉效率比沒有使用的效率高兩倍。在混合細胞實驗中,當非專一性細胞比專一性細胞數量高10倍以上時,捕捉效率將會下降,推測下降原因為當介電泳施加時,大量的非專一性細胞佔用了鍵結位置,妨礙目標細胞與抗體鍵結。為了改善混合細胞中專一性細胞的捕捉效率,本研究嘗試使用一種可逆式介電泳技術。圖形化的同心軸上電極,可以任意替換供電面積大小。首先,使提供一個正向的介電泳場,接下來改變上電極使部分電極給電,使其產生一個可逆式的介電泳場。反向介電泳將重新分佈懸浮液中未被鍵結的細胞,使專一性細胞有機會再與探針反應。接著把介電泳關閉時,未鍵結的細胞將會被緩衝液沖洗掉。往復式介電泳的設計可以再促進效率提高約25%。反應完後使用螢光顯微鏡擷取捕捉細胞螢光影像圖,並使用影像分析軟體計數。此技術可應用於檢測人體血液中少量的專一性細胞,並可在短時間內(~1小時)進行大量的陣列平行檢測,將有助於未來疫苗開發。


    中文摘要 ............................................... i 英文摘要 .............................................. ii 誌謝 ................................................. iii 目錄 .................................................. iv 圖目錄 ................................................ vi 表目錄 ................................................ ix 第一章 緒論 ........................................... 1 1.1 前言 ............................................ 1 1.2 研究背景 ........................................ 1 1.3 研究目的 ........................................ 3 第二章 相關電動力的基本原理 ........................... 4 2.1 電雙層 .......................................... 4 2.2 電滲透 .......................................... 6 2.3 介電泳 .......................................... 9 第三章 研究方法與實驗步驟 ............................ 15 3.1 介電泳細胞捕捉方法 ............................. 15 3.2 陣列式微電極製作 ............................... 20 3.2.1 清洗 ..................................... 21 3.2.2 微影製程 ................................. 22 3.2.3 電鑄 ..................................... 24 3.3 電場與流場模擬設定 ............................. 31 3.3.1 模型簡介 ................................. 31 3.3.2 模型建立與參數設定 ....................... 31 第四章 結果分析與討論 ................................ 33 4.1 模擬分析 ....................................... 33 4.2 介電泳最適合條件測試 ........................... 35 4.2.1 電極比例測試 ............................. 35 4.2.2 反應電壓測試 ............................. 36 4.2.3 反應溫度測試 ............................. 37 4.2.4 反應時間測試 ............................. 38 4.2.5 抗體濃度測試 ............................. 38 4.3 單一細胞的捕捉實驗 ............................. 39 4.4 混合細胞的捕捉實驗 ............................. 40 4.5 周邊血液單核球細胞之專一性細胞的捕捉實驗 ....... 42 4.6 專一性細胞捕捉效率探討 ......................... 44 4.7 往復式介電泳實驗 ............................... 45 4.8 陣列式微電極介電泳實驗 ......................... 47 第五章 總結與未來工作 ............................... 52 5.1 總結 ........................................... 52 5.2 未來工作 ....................................... 53 參考文獻 ............................................. 54 自述與著作 ........................................... 56

    [1]F. O. Nestle, G. Tonel, A. Farkas,“Cancer Vaccines: The Next Generation of Tools to Monitor the Anticancer Immune Response”,PLoS Medicine,vol.2, pp.0951-0952,2005
    [2]Edward Jenner,An Inquiry Into the Causes and Effects of the Variola Vaccinal,1800
    [3]Branden C., Tooze J.,Introduction to Protein Structure 2nd ed.,1999
    [4]P. Romero, J.-C. Cerottini and G. A. Waanders,“Novel methods to monitor antigen-specific cytotoxic T-cell responses in cancer immunotherapy”, Molecular medicine today,vol.4,pp.305-312,1998
    [5]Czerkinsky, C. C., Nilsson, L. A., Nygren, H., Ouchterlony, O. & Tarkowski,
    A.,“A solid-phase enzyme-linked immunospot (elispot) assay for enumeration of specific antibody-secreting cells”,J Immunol Methods,vol.65,109-121,1983
    [6]J. Rousselet, G. H. Markx, and R. Pethig,“Separation of Erythrocytes and Latex Beads by Dieletrophoretic Levitation and Hyperlayer Field-Flow Fractionation”,Colloids and Surfaces A: Physicochemical and Engineering Aspects,Vol.140,pp.209-216,1998
    [7]H. S., C.-M. Ho,“A chaotic mixer for magnetic bead-based micro cell sorter”, Jorunal of Microelectromechanical Syatem,vol.13,pp.779-790,2004
    [8]Y. Soen, D. S. Chen, D. L. Kraft, M. M. Davis, P. O. Brown,“Detection and Characterization of Cellular Immune Responses Using Peptide–MHC Microarrays”,PLoS Biology,vol.1,pp.429-438,2003
    [9]L. Yang, P. P. Banada, M. R. Chatni, K. S. Lim, A. K. Bhunia and R. Bashir,“A multifunctional micro-fluidic system for DEP concentration coupled with immuno-capture of low numbers of Listeria monocytogenes”, Lab Chip,vol.6,pp.896–905,2006
    [10]Peter R. C. Gascoyne, J.,”Vokoukal, Particle separation by dielectrophoresis”,Electrophoresis,vol.23,pp.1973-1983,2002
    [11]H. C. Chang,“Electrokinetics:a viable microfluidic platform for miniature
    diagnostic kits”,Can. J. Chem. Eng.,vol.84,pp.1-15,2006
    [12]H. A. Pohl,“The motion and Precipitation of Suspensoids in Divergent Electric Fields”,Journal of Applied Physics,Vol.22,pp.869,1951
    [13]S. Masuda, M. Washizu, T. Nanba,“Novel Method of Cell Fusion in FieldConstriction Area in Fluid Integrated Circuit”,IEEE Transactions on Industry Applications,vol.25,pp.732-737,1989
    [14]CFD-ACE(U) User Manual,Version 2002,CFD research corporation (V 2004).
    [15]CFD-ACE(U) Module Manual,Version 2002,CFD research corporation (V 2004).
    [16]M. Berger, J. Castelino, R. Huang, M. Shah, R. H. Austin,“Design of a microfabricated magnetic cell separator”,Electrophoresis,vol.22,pp.3838-3892,2001
    [17]W. C. Chang, L. P. Lee and D. Liepmann,“Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel”,Lab Chip,vol.5,pp.64–73,2005
    [18]陳建仁,微機電系統技術與應用,國科會精儀中心,2004
    [19]曾哲明,免疫學,新文京開發出版社,2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE