研究生: |
陳慧芳 Chen, Hui-Fang |
---|---|
論文名稱: |
Heparin binding specificity of PWWP/HATH domains of HDGF and HDGF-related proteins HDGF 及HDGF 相關蛋白 PWWP/HATH domains 與肝素作用之結合專注性研究 |
指導教授: |
蘇士哲
Sue, Shih-Che |
口試委員: |
張大慈
李紹禎 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 肝癌衍生生長因子 、肝素 、表面電漿共振 |
外文關鍵詞: | HDGF, heparin, SPR |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
Hepatoma-derived growth factor (hHDGF) stimulates cell proliferation on both sides of plasma membrane by either binding to membrane receptor as a growth factor or binding to DNA in nucleus as a transcriptional factor. Secreted hHDGF enables to recognize cell surface heparan sulfate to promote protein internalization and N-terminal PWWP/HATH domain consisting amino acid residue 1-100 have been proved to be responsible for heparin binding. HDGF-related proteins (HRPs) all consist a highly conserved HATH/PWWP domain in their N-terminus where the sequence identity is higher than 70%. We firstly used ITC and SPR methods to reveal the universal heparin affinity in all HRPs. The conserved HATH/PWWP domains demonstrated a broad range of binding affinity to heparin that HRP4 is the strongest heparin binder while LEDGF shows a relatively weak binding. The affinities (KD) are with more than 20-fold difference in magnitude. Using hHDGF HATH/PWWP domain as a prototype, a general heparin-binding site were defined by NMR chemical-shift perturbation where fourteen basic residues (Lys/Arg) with significant perturbations were identified. We tested the individual contributions from the identified basic residues by SPR measurement combining with alanine mutagenesis. The residue K19 together with residues K21, K61, K70, K72 and R79 demonstrates the higher potent in recognition, reflected in the weaker responses in SPR when they were mutated to alanine. Since the positive charges are conserved in all HRPs HATH/PWWP domains, we suspect that the variation in HRP sequence might remotely influences heparin binding by either perturbing protein structural stability or mediating molecular arrangement on a heparin polysaccharide chain.
中文摘要
肝癌衍生生長因子(HDGF)從肝癌細胞株的培養液發現後,目前已經在很多組織中被發現,細胞外提供的HDGF能藉由與細胞膜上的受器或硫酸乙醯肝素(heparan sulfate)結合後進入細胞質,且可被運送到細胞核內促進細胞分裂及增生,具有生長因子的功能;也能進入細胞核與DNA結合,具有轉錄因子的功能。分泌型hHDGF的N端PWWP/HATH domain含有100個胺基酸,過去研究已經證實會和肝素 (heparin)結合。HDGF相關蛋白(HRPs)在N端皆具有高度保留的PWWP/HATH domain,且序列相似性高於70%,我們利用核磁共振(NMR)化學位移擾動(chemical-shift perturbation)的方法,找出肝素可能結合的14個正電胺基酸位置,利用點突變的方法將正電胺基酸(Lys/Arg)突變成不帶電的丙胺酸(Alanine),此14個點突變Ala分子結合表面電漿共振(SPR)技術發現K19、K21、K61、K70、K72、R79應為影響肝素結合的胺基酸位置。為了了解HRPs家族與肝素的結合能力,分別使用恆溫滴定微卡計(ITC)及表面電漿共振(SPR),竟發現肝素在序列相似性這麼高的HRPs PWWP/HATH domain中有不同的結合能力,HRP-4是結合能力最強的蛋白質,而LEDGF是結合能力最差的蛋白質,兩者的結合能力(KD)相差高於20倍。在此正電胺基酸具有高度保留的PWWP/HATH domain卻有如此大的不同,推測在序列上局部的變異可能會影響結構穩定或調節肝素多醣鏈的分子排列。
參考文獻
1. Nakamura, H., Izumoto, Y., Kambe, H., Kuroda, T., Mori, T., Kawamura, K., Yamamoto, H. & Kishimoto, T. (1994). Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-9.
2. Oliver, J. A. & Al-Awqati, Q. (1998). An endothelial growth factor involved in rat renal development. J Clin Invest 102, 1208-19.
3. Everett, A. D., Lobe, D. R., Matsumura, M. E., Nakamura, H. & McNamara, C. A. (2000). Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest 105, 567-75.
4. Kishima, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Okuda, Y., Uyama, H. & Nakamura, H. (2002). Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepatogastroenterology 49, 1639-44.
5. Izumoto, Y., Kuroda, T., Harada, H., Kishimoto, T. & Nakamura, H. (1997). Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238, 26-32.
6. Ikegame, K., Yamamoto, M., Kishima, Y., Enomoto, H., Yoshida, K., Suemura, M., Kishimoto, T. & Nakamura, H. (1999). A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 266, 81-7.
7. Dietz, F., Franken, S., Yoshida, K., Nakamura, H., Kappler, J. & Gieselmann, V. (2002). The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 366, 491-500.
8. Ge, H., Si, Y. & Roeder, R. G. (1998). Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17, 6723-9.
9. Sue, S. C., Chen, J. Y., Lee, S. C., Wu, W. G. & Huang, T. H. (2004). Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 343, 1365-77.
10. Slater, L. M., Allen, M. D. & Bycroft, M. (2003). Structural variation in PWWP domains. J Mol Biol 330, 571-6.
11. Stec, I., Nagl, S. B., van Ommen, G. J. & den Dunnen, J. T. (2000). The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473, 1-5.
12. Abouzied, M. M., Baader, S. L., Dietz, F., Kappler, J., Gieselmann, V. & Franken, S. (2004). Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J 378, 169-76.
13. Enomoto, H., Yoshida, K., Kishima, Y., Kinoshita, T., Yamamoto, M., Everett, A. D., Miyajima, A. & Nakamura, H. (2002). Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-27.
14. Thakar, K., Krocher, T., Savant, S., Gollnast, D., Kelm, S. & Dietz, F. (2010). Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem 391, 1401-10.
15. Everett, A. D., Narron, J. V., Stoops, T., Nakamura, H. & Tucker, A. (2004). Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol 286, L1194-201.
16. Mori, M., Morishita, H., Nakamura, H., Matsuoka, H., Yoshida, K., Kishima, Y., Zhou, Z., Kida, H., Funakoshi, T., Goya, S., Yoshida, M., Kumagai, T., Tachibana, I., Yamamoto, Y., Kawase, I. & Hayashi, S. (2004). Hepatoma-derived growth factor is involved in lung remodeling by stimulating epithelial growth. Am J Respir Cell Mol Biol 30, 459-69.
17. Everett, A. D. & Bushweller, J. (2003). Hepatoma derived growth factor is a nuclear targeted mitogen. Curr Drug Targets 4, 367-71.
18. Yoshida, K., Nakamura, H., Okuda, Y., Enomoto, H., Kishima, Y., Uyama, H., Ito, H., Hirasawa, T., Inagaki, S. & Kawase, I. (2003). Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 18, 1293-301.
19. Hu, T. H., Huang, C. C., Liu, L. F., Lin, P. R., Liu, S. Y., Chang, H. W., Changchien, C. S., Lee, C. M., Chuang, J. H. & Tai, M. H. (2003). Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-56.
20. El-Rifai, W., Frierson, H. F., Jr., Harper, J. C., Powell, S. M. & Knuutila, S. (2001). Expression profiling of gastric adenocarcinoma using cDNA array. Int J Cancer 92, 832-8.
21. Matsuyama, A., Inoue, H., Shibuta, K., Tanaka, Y., Barnard, G. F., Sugimachi, K. & Mori, M. (2001). Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res 61, 5714-7.
22. Kuroda, T., Tanaka, H., Nakamura, H., Nishimune, Y. & Kishimoto, T. (1999). Hepatoma-derived growth factor-related protein (HRP)-1 gene in spermatogenesis in mice. Biochem Biophys Res Commun 262, 433-7.
23. Cherepanov, P., Devroe, E., Silver, P. A. & Engelman, A. (2004). Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 279, 48883-92.
24. El-Tahir, H. M., Dietz, F., Dringen, R., Schwabe, K., Strenge, K., Kelm, S., Abouzied, M. M., Gieselmann, V. & Franken, S. (2006). Expression of hepatoma-derived growth factor family members in the adult central nervous system. BMC Neurosci 7, 6.
25. El-Tahir, H. M., Abouzied, M. M., Gallitzendoerfer, R., Gieselmann, V. & Franken, S. (2009). Hepatoma-derived growth factor-related protein-3 interacts with microtubules and promotes neurite outgrowth in mouse cortical neurons. J Biol Chem 284, 11637-51.
26. Engelman, A. & Cherepanov, P. (2008). The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog 4, e1000046.
27. Sutherland, H. G., Newton, K., Brownstein, D. G., Holmes, M. C., Kress, C., Semple, C. A. & Bickmore, W. A. (2006). Disruption of Ledgf/Psip1 results in perinatal mortality and homeotic skeletal transformations. Mol Cell Biol 26, 7201-10.
28. Fatma, N., Singh, D. P., Shinohara, T. & Chylack, L. T., Jr. (2001). Transcriptional regulation of the antioxidant protein 2 gene, a thiol-specific antioxidant, by lens epithelium-derived growth factor to protect cells from oxidative stress. J Biol Chem 276, 48899-907.
29. Shinohara, T., Singh, D. P. & Fatma, N. (2002). LEDGF, a survival factor, activates stress-related genes. Prog Retin Eye Res 21, 341-58.
30. Abouzied, M. M., El-Tahir, H. M., Prenner, L., Haberlein, H., Gieselmann, V. & Franken, S. (2005). Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem 280, 10945-54.
31. Goodfellow, I. G., Sioofy, A. B., Powell, R. M. & Evans, D. J. (2001). Echoviruses bind heparan sulfate at the cell surface. J Virol 75, 4918-21.
32. Fritz, T. A., Lugemwa, F. N., Sarkar, A. K. & Esko, J. D. (1994). Biosynthesis of heparan sulfate on beta-D-xylosides depends on aglycone structure. J Biol Chem 269, 300-7.
33. Wang, C. H., Davamani, F., Sue, S. C., Lee, S. C., Wu, P. L., Tang, F. M., Shih, C., Huang, T. H. & Wu, W. G. (2010). Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 433, 127-38.
34. Sue, S. C., Chen, J. Y. & Huang, T. H. (2004). Sequence specific 1H, 13C and 15N resonance assignments of the hath-domain of human hepatoma-derived growth factor. J Biomol NMR 29, 95-6.
35. Kishima, Y., Yamamoto, H., Izumoto, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Ito, H., Yoshizaki, K. & Nakamura, H. (2002). Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-22.
36. Lukasik, S. M., Cierpicki, T., Borloz, M., Grembecka, J., Everett, A. & Bushweller, J. H. (2006). High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci 15, 314-23.
37. Osmond, R. I., Kett, W. C., Skett, S. E. & Coombe, D. R. (2002). Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization. Anal Biochem 310, 199-207.
38. Futamura, M., Dhanasekaran, P., Handa, T., Phillips, M. C., Lund-Katz, S. & Saito, H. (2005). Two-step mechanism of binding of apolipoprotein E to heparin: implications for the kinetics of apolipoprotein E-heparan sulfate proteoglycan complex formation on cell surfaces. J Biol Chem 280, 5414-22.
39. Sasaki, T., Larsson, H., Kreuger, J., Salmivirta, M., Claesson-Welsh, L., Lindahl, U., Hohenester, E. & Timpl, R. (1999). Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO J 18, 6240-8.