簡易檢索 / 詳目顯示

研究生: 董曉明
Hsiao-Ming Tung
論文名稱: 基版偏壓及熱處理對氮化鋯奈米薄膜結構與性質之影響
Effect of bias and heat treatment on the microstructure and properties of ZrN thin films deposited by Filtered Cathodic Arc Ion-Plating
指導教授: 喻冀平
Ge-Ping Yu
黃嘉宏
Jia-Hong Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 99
中文關鍵詞: 偏壓熱處理動能動量過濾式陰極電弧硬度殘餘應力腐蝕
外文關鍵詞: bias, heat treatment, energy and momenntum, filtered cathodic arc, hardness, residual stress, corrosion
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的在研究基板偏壓與熱處理前後對奈米晶氮化鋯薄膜成分、結構、機械性質與腐蝕抗性的影響。利用過濾式陰極電弧中,鍍著奈米晶氮化鋯薄膜於(100)矽晶片和304不鏽鋼上。結果顯示、由於不同的基板離子電流,鍍著於304不鏽鋼上的氮化鋯薄膜,其能量動量高於鍍著於矽基板上,也因而導致不同的結構。此外,從X
    光光電子能譜儀與二次離子質譜儀的結果發現,氧原子均勻分布在氮化鋯薄膜中。在熱處理後,鍍著於304不鏽鋼上的氮化鋯薄膜,其硬度有顯著的下降,下降幅度為36.1% ~ 46.9%。此乃由於原子的重新排列而導致缺陷的減少以及二氧化鋯的形成。然而,除了B3試片之外,熱處理過後的氮化鋯薄膜鍍著於矽基板上,由於原子已經到達平衡的原子位置,故其硬度並沒有顯著變化。氮化鋯在不鏽鋼與矽基板上的本質殘餘應力,其大小相當接近。伴隨著熱處理,氮化鋯薄膜在不鏽鋼的本質殘餘應力有顯著的下降,此乃由於所造成應力之缺陷原子的回復。在腐蝕抗性方面,在1N H2SO4 + 0.05M KSCN 溶液中,發現伴隨著熱處理,腐蝕電流密度有下降的趨勢;然而,臨界腐蝕電流卻明顯的上升,可歸納為三個原因;熱處理後的基板腐蝕抗性降低、膜本身孔隙或孔洞的連接,與氮化鋯和三氧化二鉻在不鏽鋼基材在介面處的反應。


    Nano-crystalline ZrN films were deposited on Si (100) and AISI 304 stainless steel substrates using Filtered Cathodic Arc Deposition (FCAD) system. The effects of negative substrate bias and thermal treatment were investigated on the composition, structures, properties, and corrosion resistance of the ZrN film. The calculated energy and momentum of ZrN films deposited on 304SS was higher than on Si due to different substrate current density (or flux of ions), resulting in the different microstructure of deposited films. Oxygen atoms were incorporated and distrubed uniformly from the results of XPS and SIMS. After heat treatment, loss of hardness for ZrN/304SS dramatically decreased about 36.1% ~ 46.9%, attributed to the rearrangement of defects in atomic dimension and formation of ZrO2 phase. No significant variation in the hardness of ZrN/Si was observed except B3 specimen because the deposited atoms may have positioned the reqular site. The intrinsic residual stress of the films coated on both substrates were at similar order of magnetude. For ZrN/304SS, the intrinsic residual stress is apparently lowered as a result of recovery of atoms in the films. The results of potentiodynamic polarization scan in the solution of 1N H2SO4 + 0.05M KSCN indicate that Icorr value decreased with heating; however, the Icrit value increased due to the decrease of corrosion resistance of the substrate, connect of pinhole or porosity throughout the film, and the reaction of ZrN and Cr2O3 at interface of ZrN thin film and 304SS substrate.

    Contents Contents…………………………………………………………….… I List of Figures………………………………………………………… IV List of Tables .………………………………………………………… XI Chapter 1 Introduction……………………………………………. 1 Chapter 2 Literature Review……………….……………………... 4 2.1 Coating Process…………………..……………………….. 4 2.2 Vacuum Arcs………...…….…..………………………….. 4 2.3 Macroparticles………..….…..……………………………. 5 2.4 Filtered Cathodic Arc Deposition ………………………... 6 2.5 Energetic Condensation and Momentum Transfer…...…… 10 2.6 Structure of ZrN…...……………………………………… 13 2.7 Preferred Orientation………………………………...……. 16 2.8 Hardness…………………………………………………… 16 2.9 Resistivity…………………………………………………. 17 2.10 Residual Stress…………………………………………….. 17 2.11 Effect of oxygen incorporated in nitride thin films……….. 19 2.12 Corrosion Resistance 20 2.13 Heat Treatment 21 Chapter 3 Experimental Details………………………………….. 23 3.1 Specimen Preparation Material and Coating process……... 23 3.2 Characterization Method………………………………….. 27 3.2 Structure Characterixation ……………………………... 27 3.2.1 θ/2θ Scan …………………………………………. 27 3.2.2 Glancing incidence X-ray diffraction (GIXRD).…. 28 3.2.3 Field Emission Scanning Electron Microscopy (FEG-SEM)………………………………………. 28 3.3 Composition Characterization ………...………………….. 28 3.3.1 X-ray Photoelectron Spectroscopy (XPS)…………… 18 3.3.2 Secondary Ion Mass Spectroscopy (SIMS) 29 3.3.3 Rutherford Backscattering Spectrometer (RBS)……… 29 3.4 Properties………………………………………………….. 30 3.4.1 Electrical Resistivity……………………………….…. 30 3.4.2 Hardness……………………..………………………... 31 3.4.3 Roughness………………………..…...…………….… 32 3.4.4 Residual Stress………………….………………….… 33 3.5 Corrosion Resistance ………………….………………….. 33 3.5.1 Salt Spray Test …………………...…………………... 33 3.5.2 Potentiodynamic Polarization Scan 34 3.6 Heat Treatment 37 Chapter 4 Results……………….……………..…………………… 40 4.1 Substrate Current Density………………………..……. 40 4.2 Energy and Momentum …….………………………..……. 40 4.3 Microstructure……………….…………………………….. 44 4.4 Composition…..…………………………………………... 44 4.5 Surface Image……………………………………………... 48 4.6 XRD ……………………...……………………………..… 48 4.7 Glancing incidence X-ray diffraction (GIXRD) …………. 55 4.8 N/Zr Ratios and Packing Factor…………………………… 60 4.9 Hardness…………………………………………………… 61 4.10 Residual Stress…………………………………………….. 62 4.11 Resistivity…………………………………………………. 62 4.12 Corrosion Resistance………………………………………. 70 4.12.1 Potentiodynamic Polarization Scan…………………. 70 4.12.2 Salt Spray Test………………………………………. 71 Chapter 5 Discussion………………………………………………. 74 5.1 Effect of Energy and Momentum on deposited film……… 74 5.2 Structure…………………………………………………… 75 5.3 Hardness………………………………………….……..… 80 5.4 Residual Stress……………………………………………. 85 5.5 Corrosion Property………………………………………… 88 Chapter 6 Conclusions…………………………………………….. 92 Chapter 7 Reference……………………………………..….……... 94 List of Figures Fig 2.1 Schematic diagram of a typical cathodic region in vacuum-arc system ………………………….………………... .8 Fig 2.2 Schematic diagram showing the formation mechanism of macroparticles and surface morphology in an arc ion-plated TiN coating…………………………………...…………………… ..8 Fig 2.3 Filter configurations: (a) classical 90o– duct filter, (b) “S”–duct filter.…………………………………………………..9 Fig 2.4 A structure zone model for ion beam assisted deposition…12 Fig 2.5 The structure of stoichiometric ZrN…………………… 14 Fig 2.6 The surface density of different crystalline planes for ZrN film…………………………………………………………. 15 Fig 3.1 Schematic diagram of Filtered Cathodic Arc Deposition (FCAD) system ……….………………………………………24 Fig 3.2 Schematic diagram of experimental flow chart………….. 26 Fig 3.3 The schematic diagram of a typical electrochemical cell.. .36 Fig 3.4 The schematic diagram of a typical set-up for electrochemical……………………………………………… ..36 Fig 3.5 Schematic diagram of Lingberg high temperature tube furnace…………………………………………………………37 Fig 4.1 Substrate ion current density v.s bias voltage…………. ... 41 Fig 4.2 Total energy with respect to substrate bias for ZrN film deposited on Si and 304 S.S…………….……………………..43 Fig 4.3 Momentum with respect to substrate bias for ZrN film deposited on Si and 304 S.S…………………………………...43 Fig 4.4 The cross-sectional SEM pictures of the B-series specimens………………………….. ….………………..….…45 Fig 4.5 The SIMS depth profiles of SS1 ~ SS5………………… ...48 Fig 4.6 T The 3-D AFM images of B5 and HT-B5 specimens at 1μ x 1μm scan size……………………………………..…………...51 Fig 4.7 The 3-D AFM images of SS4 and HT-SS5 specimens at 1μ x 1μm scan size…………………………………………….. .… 51 Fig 4.8 XRD patterns of ZrN thin films deposited on Si at different negative substrate bias………………….…………………….. 52 Fig 4.9 XRD patterns of heat treatment ZrN thin films deposited on Si at different negative substrate bias………………………….52 Fig 4.10 XRD patterns of ZrN thin films deposited on 304 S.S. at different negative substrate bias…………..………………….. 53 Fig 4.11 XRD patterns of heat treatment ZrN thin films deposited on 304 S.S. at different negative substrate bias…………………...53 Fig 4.12 The variation of (111) FWHM at different negative substrate bias on Si…………………………………………..…………..54 Fig 4.13 The variation of (111) FWHM at different negative substrate bias on 304 S.S.………………………………………………..54 Fig 4.14 The GIXRD results of B2 specimen…………………… 56 Fig 4.15 The GIXRD results of SS5 specimen... ……………… 56 Fig 4.16 The linear fitting result of lattice parameter for sample B2.57 Fig 4.17 The linear fitting result of lattice parameter for sample SS.57 Fig 4.18 The GIXRD results for HT-B2 specimen……………… 58 Fig 4.19 The GIXRD results of HT-SS5 specimen……………… 58 Fig 4.20 The linear fitting result of lattice parameter for sample HT-B2……………………….…………………………………59 Fig 4.21 The linear fitting result of lattice parameter for sample HT-SS5…………………………..…………………………….59 Fig 4.22 The RBS result of sample B2…………………..………….63 Fig 4.23 The RBS result of sample SS1…………………………….63 Fig 4.24 The N/Zr ratios of the ZrN films deposited on Si with respect to negative substrate bias……………….……………..64 Fig 4.25 The N/Zr ratios of the ZrN films deposited on 304 S.S. with respect to negative substrate bias……..…………………….…64 Fig 4.26 The packing factor of the as-deposited and heat-treated ZrN films deposited on Si with respect to negative substrate bias....65 Fig 4.27 The packing factor of the as-deposited and heat-treated ZrN films deposited on 304S.S. with respect to negative substrate bias…………………………………………………………. 65 Fig 4.28 The hardness of ZrN films deposited on Si with respect to negative substrate bias……………………………………........66 Fig 4.29 The hardness of heat-treated ZrN films deposited on Si with respect to negative substrate bias……………………………...66 Fig 4.30 The hardness of ZrN films deposited on 304 S.S. with respect to negative substrate bias………..………………….....67 Fig 4.31 The hardness of heat-treated ZrN films deposited on 304 S.S. with respect to negative substrate bias……………………...... 67 Fig 4.32 The residual stress of as-deposited and heat-treated ZrN films on Si with respect to negative substrate bias.………........68 Fig 4.33 The residual stress of as-deposited and heat-treated ZrN films on 304 S.S. with respect to negative substrate bias……..68 Fig 4.34 The resistivity of as-deposited and heat-treated ZrN films deposited on Si with respect to negative substrate bias…….....69 Fig 4.35 Fig. 4.35 Results of potentiodynamic polarization curves of ZrN films deposited on 304 S.S. in 1N H2SO4 + 0.05M KSCN solution……………………………………………………..….72 Fig 4.36 Results of potentiodynamic polarization curves of annealed ZrN films deposited on 304 S.S. in 1N H2SO4 + 0.05M KSCN solution………………………………...………………………72 Fig 4.37 The surface morphology of ZrN-coated 304 S.S. for sample SS1 and HT-SS1 at magnification of 200X. (a) SS1, (b) HT-SS1………………………………………………………...73 Fig 5.1 The (111) texture coefficient of ZrN films deposited on 304 S.S………………………….……………………………….....79 Fig 5.2 The (111) texture coefficient vs. hardness for ZrN/304SS..84 Fig 5.3 Hardness of ZrN films deposited on Si………..……….....84 Fig 5.4 Fig. 5.4 Hardness of ZrN films deposited on 304 S.S…….85 Fig 5.5 The critical current density with respect to negative substrate bias…………………………………………………….………91 Fig 5.6 The normalized critical current density with respect to negative substrate bias…………………………………………91 List of Tables Table 2.1 The degree of ionized target atoms with some PVD processes……………………………………………………… 12 Table 3.1 The optimum coating conditions of ZrN film.…..…………25 Table 3.2 The negative substrate bias on Si substrate.…………….… 25 Table 3.3 The negative substrate bias on AISI 304 substrate….……..25 Table 3.4 Geometrical correction factor………………….………..…31 Table 3.5 The experimental conditions of salt spray test.……..……...34 Table 4.1 Experiment results of ZrN/Si and ZrN/304SS thin film... .. 38 Table 4.2 Experiment results of annealed ZrN/Si and ZrN/304SS thin film…………………………………………………………….39 Table 4.3 The ion current density variation with increasing bias from ranging -40 V to -100 V on Si and -40 V to -80 V on 304 S.S..41 Table 4.4 The variations of energy for ZrN/Si and ZrN/304SS specimens with different negative substrate bias………. 42 Table 4.5 The variations of energy for ZrN/Si and ZrN/304SS specimens with different negative substrate bias.…………… .42 Table 4.6 Results of potentiodynamic polarization scan of ZrN films deposited on 304 S.S. in 1N H2SO4 + 0.05M KSCN solution. 71 Table 4.7 The corrosion area percentage of as-deposited and heat-treated ZrN films after 500-hr salt spray test………...…. 73 Table 5.1 The result of deposition rate and momentum with respect to negative substrate bias on Si…………………………………..79 Table 5.2 Thermal stress and intrinsic stress of as-coated ZrN………87 Table 5.3 Thermal stress and intrinsic stress of heat-treated ZrN…….88

    [1] R.L. Boxman, P.J. Martin, D. Sanders (Eds.), Handbook of Vacuum Arc Science and Technology, Noyes, New York, 1996.
    [2] B. Juttner, IEEE Trans. Plasma Sci. PS-15 (1987) 474-480.
    [3] G..Y. Yushkov, A. Anders, E.M. Oks, I.G. Brown, J. Appl. Phys. 88 (2000) 5618-5622.
    [4] D.Sanders, Vacuum Arc-Based Processing, in Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surfsce Interactions, Noyes publications, New Jersey, 1995.
    [5] M. H. Shiao, F. S. Shieu, Thin Solid Film 386 (2001) 27-31.
    [6] J.E. Daalder, J. Phys. D: Appl. Phys. 9 (1976) 2379-2395
    [7] S. Anders, A. Anders, K.M. Yu, X.Y. Yao, I.G. Brown, IEEE Trans. Plasma Sci. 21 (1993) 440-446.
    [8] A. Anders, Surf. Coa. Technol. 120-121 (1999) 319-330.
    [9] Messier R, Giri AP, Roy RA. 1984. J. Vac. Sci. Technol. A 2:500
    [10] Olbrich W, Kampschult G, 1993. Surf. Coat. Technol. 61:262
    [11] Kelly PJ, Arnell RD, 1998. J. Vac Sci. Technol. A 16:2858
    [12] Y.W. Lin, Thesis “Effect of substrate bias on the structure and properties of nanocrystalline ZrN thin film deposited by unbalanced magnetron sputtering.” (2003) National Tsing Hua University, R.O.C.
    [13] E. Lugscheider, C. Barimani, C. Wolff, S. Guerreiro, G. Doepper, Surf. Coat. Technol. 86-87 (1996) 177.
    [14] C. Stobel, Doctorial thesis, Aachen University of Technology, 1991.
    [15] J. Musil and J. Wolfe, Mater. Sci. and Eng., A163, (1993), 211.
    [16] R.L. Celler and R. Nimmagadda, J. Electrochem. Soc.,132, (1985), 211.
    [17] P. Jin and S. Maruno, Jap. J. Appl. Phys., 30(7), (1991), 1463.
    [18] J.A. Thorton and D.W. Hoffman, Thin Solid Films, 171, (1989), 81.
    [19] J. Pelleg, L.Z. Zevin, S. Lungo, and N.Croitora, Thin Solid Films, 197(1991)117.
    [20] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, and X.H. Liu, J. phys. D: Appl. Phys., 30(1997)5.
    [21] P. Panjan and B. Navinsek, Thin Solid Films, 228(1993)233.
    [22] D.S. Rickerby and P.J. Burnett, Thin Solid Film, 157(1988)195.
    [23] B. Jonsson and S. Hogmark, ibid, 114(1984)257.
    [24] H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, J. Appl. Phys. 80, (1996) 6725.
    [25] J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), Physics and Chemistry of Protective Coatings, American Institute of Physics, MA, 1986, p.95.
    [26] S. Horita, J. Vac. Sci. Technol., A 14(1) (1996) 203.
    [27] M. Yoshitake, T. Yotsuya and S. Ogawa, Jap. J. Appl. Phys., 31 (1992) 4002.
    [28] Y.H. Cheng, B. K. Tay and S. P. Lau, J. Vac. Sci. Technol. B 20(5), Sep/Oct 2002.
    [29] H. Oettel, R. Wiedemann, S. PreiBler, Surf. Coat. Technol., 74-75(1995)273.
    [30] C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73-78.
    [31] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153(1987) 37.
    [32] Society for Automotive Engineering, Residual Stress Measurement by X-ray Diffraction, SAE J748a, 2nd Ed. (1971).
    [33] I. C. Noyan, J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, (1987)
    [34] V. Valvoda, R. Kuzel. Jr., R. Cerny, d. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Thin Solid Films, 193-194 (1990) 401.
    [35] N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Applied Surface Science, 185 (2001) 123-133.
    [36] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, J. De Rijk, Thin Solid Films, 447-448 (2004) 449-454.
    [37] Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K.Nogi, Surf. Coat. Technol., 98 (1999) 934-938.
    [38] E. Alves, A. R. Ramos, N. P. Barradas, F. Vaz, P. Cerqueira, L. Rebouta, U. Kreissig, Surf. Coat. Technol., 180-181 (2004) 372-376.
    [39] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., 174-175 (2003) 197-203
    [40] W.J. Chou, G. P. Yu, J.H. Huang, Surf. Coat. Technol., 149 (2002) 7.
    [41] W. J. Chou, G.P. Yu, J.H. Huang, Corrs. Sci., 43, (2001) 2023-2035.
    [42] C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, 2003. National Tsing Hua University, R.O.C..
    [43] L. van Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol., 53(1992)25.
    [44] K. Takizawa, M. Fukushima, K. KuroKawa, H. Okada and H. Imai, Hyomen Gijutsu, 42 (1991) 1152.
    [45] B.F. Chen, W.L. Pan, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 111(1999)16.
    [46] W.L. Pan, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 127(1998)111.
    [47] J.Y. Chen, G.P. Yu, J.H. Huang, Mater. Chem. Phys., 65, (2000) 310-315.
    [48] Hitoshi Uchida, Shozo Inoue, Keiji Koterazawa, Mater. Sci. Eng.,A234-236 (1997) 649
    [49] T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng., 45 (1996) 425.
    [50] T. Kado, R. Makabe, S.Mochizuki, S. Nakajima and M. Araki, Boshoku Gijutsu (Corrosion Engineering), 36 (1987) 551.
    [51] K. Fukutomi and M. Okada, Kinzoku Htomen Gijutsu, 35 (1984) 45.
    [52] W.J. Chou, G. P. Yu, J.H. Huang, Surf. Coat. Technol., 168 (2003) 43-50.
    [53] W. Mader, H.F. Fischmeister, E. Bergmann, Thin Solid Films, 182 (1989) 141.
    [54] K. J. Yu, “Effect of heat treatment under controlled atmosphere on the properties of TiN film deposited by unbalanced magnetron sputtering”, 2003. National Tsing Hua University, R.O.C.
    [55] S. Inoue, T. Ohba, H. Takata, K. Koterazawa, Thin Solid Films, 343-344 (1999) 230.
    [56] Anthony J. Perry, Jesse N. Matossian, Steve J. Bull, Dmitri I. Proskurovsky, Peter C. Rice-Evans, Trevor F. Page, Daniel E. Geist, James Taylor, John J. Vajo, Robert E. Doty, Vladimir Rotshtein, Alexey B. Markov, Surf. Coat. Technol., 120-121(1999) 337.
    [57] F.H.M. Sanders, G. Verspui, Thin Solid Films, 161(1988) L87.
    [58] Mustafa Urgen, Ali Fuat Cakir, Surf. Coat. Technol., 96 (1997) 236-224.
    [59] P. Scherrer, Gött. Nachr 2, (1918) 98.
    [60] Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233.
    [61] ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350
    [62] Metals Handbook 9th ed., Vol. 13, 1988, ASM INTERNATIONAL, Metals Park, OH, p.212.
    [63] H. Uchida, S. Inoue, K. Koterazawa , Mater. Sci. Eng. A 234-236 (1997) 649.
    [64] W.J. Chou, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 167 (2003) 59-67.
    [65] J. Pearson and U.J.C.Ende, J. Iron Steel Inst., 1953 175 52. ΔG (formation) of metal nitrides.
    [66] O. Kubaschewski and J.A. Catterall, “Thermodynamic data of alloys”, Pergamon: London, 1956.
    [67] F.D. Richardson and J.H.E.Jeffes, J. Iron Steel Inst., 1948 160 261; 1949 163 397. ΔG (formation) of metal oxides: assessment.
    [68] Yushkov GY, Anders A, Oks EM, Brown IG, J. Appl. Phys. 88 (10): 5618-5622 NOV 15 2000
    [69] I.A. Ovid’ko, Science, 295 (2002) 2386
    [70] H.-C. Yang. “Effect of film thickness on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Ion Plating” Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003)
    [71] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993) 233.
    [72] P.C. Johnson, H. Randhawa, Surf. Coat. Technol. 33 (1987) 53.
    [73] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat.
    Technol. 116-119 (1999) 133.
    [74] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol. 112 (1999) 108.
    [75] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Surf. Coat. Technol., 66 (1994) 318.
    [76] L.E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, (1971), p. 188.
    [77] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol. 41 (1990) 191.
    [78] L.Van Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol. 53 (1992) 25.
    [79] C.Y. Ting, J. Vac. Sci. Technol. 21 (1982) 14.
    [80] V.A. Mernagh, T.C. Kelly, M. Ahern, A.D. Kennedy, A.P.M. Adriaansen, P.P.J. Ramaekers, L. McDonnell, R. Koekoek, Surf. Coat. Technol. 49 (1991) 462.
    [81] J. Vetter, R. Rochotzki, Thin Solid Films 192 (1990) 253.
    [82] U. Beck, G. reiners, I. Urban, H.A. Jehn, U. Kopacz, H. Schack, Surf. Coat. Technol. 61 (1993) 15.
    [83] M. Thieme, Corros. Sci. 34 (1993) 1557.
    [84] M.Yoshitake, T. Yotsuya, S. Ogawa, Jpn. J. Appl. Phys., 31 (1992) 4002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE