簡易檢索 / 詳目顯示

研究生: 洪紹修
Shao-Hsiu Hung
論文名稱: 安全且可重設定行動管理平台之設計與實作
Design and Implementation of sRAMP: Secure Reconfigurable Architecture and Mobility Platform
指導教授: 陳志成
Jyh-Cheng Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 無線網路安全網路架構可重設定網路安全認證
外文關鍵詞: Wireless Security, Network Architecture, Reconfigurable Networks, Authentication
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線網路技術的發展,目前已發展出多套無線網路系統。在諸多系統中,基於無線電波之特型,此些無線網路系統通常在電波覆蓋範圍及資料傳輸速度兩方面間具有互補性。由於此互補性情況之存在,此些無線網路系統預期將會共存並行於未來的無線網路環境。因此,如何整合此諸多異質性無線網路系統將會是ㄧ重要之研究議題。
    異質性無線網路系統間之整合主要包含整合無線電接取網路(Radio Access Network)及核心網路(Core network)兩個部分。目前對於無線電接取網路不相容之問題可採用支援多種模式的網路介面卡以解決。然而,各種無線網路系統於核心網路採用彼此互不相容之架構的問題卻尚未被完整的解決。為此,本論文即欲提出一可重設定核心網路(Reconfigurable Core Network)之架構以完整解決各異質性無線網路系統於核心網路端彼此不相容之問題。
    為提出一可解決核心網路不相容問題之方案,一可重設定行動管理平台先前已被實作完成以做為可重設定核心網路架構的基礎。本論文中提出ㄧ安全且可重設定行動管理平台,即於先前之可重設定行動管理平台中加入安全性機制之考量。本論文提出之安全機制包含兩個部分:第一部份即將此平台之可重設定性從行動管理延伸至網路存取控制之認證機制;第二部份為設計ㄧ安全協定以保證先前設計之可重設定行動管理平台可避免被惡意使用者入侵或攻擊。本論文中亦架設ㄧ測試環境,並於測試環境中進行測試,實驗及評估以驗證本文中提出安全機制之完整性及可行性。由於本論文提出之安全且可重設定行動管理平台涵括可重設定核心網路中關於移動管理及安全機制兩方面之議題。因此,設計與實作出本論文所提出之安全且可重設定行動管理平台可視為邁向建構一完整可重設定核心網路的一大里程碑。


    Many wireless systems have been proposed and deployed for decades. However, most of them are incompatible. It is expected that various wireless systems will coexist in the near future. How to integrate them, thus, becomes an important topic. The integration should be done in both Radio Access Network (RAN) and Core Network. A mobile user could overcome the incompatibility of different RANs by using multiple radio interfaces or Software Defined Radio (SDR). However, it still requires a common core network to achieve universal roaming. If it is not possible to deploy a common core network, different core networks should be compatible. Unfortunately, standards organizations have been defining their own core networks. The roaming among heterogeneous networks has become a challenge. Earlier, we have proposed Reconfigurable Architecture and Mobility Platform (RAMP) to address this issue. However, RAMP mainly considers mobility management. In this thesis, we present secure RAMP (sRAMP) which extends RAMP to support reconfigurability in security. This thesis presents the design and implementation of sRAMP. To demonstrate the feasibility of sRAMP, a testbed has been constructed. This thesis also presents the experimental results conducted by using the testbed. Furthermore, a brief comparison between the proposed sRAMP and other related studies is also presented.

    Acknowledgments .................................. ii Abstract ........................................ iii List of Tables ..................................... vii List of Figures .................................... viii 1. Introduction .................................... 1 2. Background .................................... 3 2.1. RAMP.Recongurable Architecture and Mobility Platform ......... 4 2.2. Recongurability of Authentication Protocols ................ 6 2.3. Architecture Security ............................. 10 3. Secure Recongurable Architecture and Mobility Platform (sRAMP) .... 13 3.1. System Architecture .............................. 14 3.2. Proposed Solutions .............................. 14 3.2.1. Recongurability of Authentication Protocols ............ 15 3.2.2. Architecture Security ......................... 17 3.3. sRAMP Architecture ............................. 21 3.3.1. sRAMP NN Architecture ....................... 21 3.3.2. sRAMP MN Architecture ...................... 24 3.4. sRAMP Operation and Processing Flow ................... 26 3.4.1. Operation of sRAMP MN to initiate negotiation process ...... 26 3.4.2. Operation of sRAMP ENN to tackle negotiation process ...... 27 3.4.3. Operation of sRAMP ENN to initiate authentication process .... 28 3.4.4. Operation of sRAMP MN to tackle authentication process ..... 28 3.4.5. Operation of sRAMP MN to initiate registration process ...... 29 3.4.6. Operation of sRAMP ENN to tackle registration process ...... 29 4. Testbed and Evaluations ............................. 34 4.1. Implementation of sRAMP .......................... 34 4.2. Testbed Architecture ............................. 36 4.3. Experiments and Experimental Analyses ................... 36 4.3.1. Recongurability of the Authentication Protocol .......... 37 4.3.2. Co-existence of the Authentication Protocol ............. 38 4.3.3. Handoff Latency Analyses ...................... 39 4.3.4. Experimental Analyses ........................ 39 4.4. Security Requirements Evaluation ...................... 40 4.4.1. Evaluation of Recongurable Authentication Protocols ....... 40 4.4.2. Evaluation of Architecture Security ................. 43 5. Conclusion and Future Work .......................... 47 Bibliography ..................................... 49

    [1] "General Packet Radio Service (GPRS) Service Description (Stage 2)." TS 122 060, ETSI, 2002.
    [2] "Wireless IP Network Standard. P.S0001-A-1." Third Generation Partnership Program 2 (3GPP2), 2000.
    [3] "Wireless LAN medium access control (MAC) and physical layer (PHY) specications. " ANSI/IEEE Std 802.11: 1999 Part II, ISO/IEC 8802-11, 1999.
    [4] J.-C. Chen and T. Zhang, IP-Based Next-Generation Wireless Networks. Wiley, Jan. 2004.
    [5] W. H. W. Tuttlebee, "Software-dened radio: facets of a developing technology," in IEEE Personal Communications, vol. 6, pp. 38"44, apr 1999.
    [6] J.-C. Chen, J.-H. Yeh, Y.-W. Lan, L.-W. Lin, F.-C. Chen, and S.-H. Hung, "RAMP: recongurable architecture and mobility platform," in GLOBECOM, pp. 3564" 3569, 2005.
    [7] C. Perkins, "IP mobility support for IPv4." IETF RFC 3344, Aug. 2002.
    [8] E. Gustafsson, A. Jonsson, and C. Perkins, "Mobile IP regional registration." Internet Draft, draft-ietf-mobileip-reg-tunnel-03, Sept. 2000.
    [9] J.-C. Chen and P. Agrawal, "Fast link layer and intra-domain handoffs for mobile Internet," in Proc. of Computer Software and Applications Conference (COMPSAC), (Taipei, Taiwan), pp. 325"330, Oct. 2000.
    [10] R. Ramjee, K. Varadhan, L. Salgarelli, S. R. Thuel, S.-Y. Wang, and T. L. Porta, "HAWAII: a domain-based approach for supporting mobility in wide-area wireless networks, " in IEEE/ACM Transactions on Networking, vol. 10, pp. 396"410, jun 2002.
    [11] S. Das, A. McAuley, A. Dutta, A. Misra, K. Chakraborty, and S. K. Das, "IDMP: an intradomain mobility management protocol for next-generation wireless networks," in EEE Wireless Communications, vol. 22, pp. 38"45, jun 2002.
    [12] A. A.-G. Helmy, M. Jaseemuddin, and G. Bhaskara, "Multicast-based mobility: a novel architecture for efcient micromobility," in IEEE Journal on Selected Areas in Communications, vol. 122, pp. 677"690, may 2004.
    [13] W. Ma and Y. Fang, "Dynamic hierarchical mobility management strategy for mobile IP networks," in IEEE Journal on Selected Areas in Communications, vol. 22, pp. 664" 676, may 2004.
    [14] A. Campbell, J. Gomez, C.-Y. Wan, S. Kim, Z. Turanyi, and A. Valko, "Cellular IP." Internet Draft, draft-ietf-mobileip-cellularip-00.txt, Jan. 2000.
    [15] H. Kim, K.-S. D. Wong, W. Chen, and C. L. Lau, "Mobility-aware MPLS in IP-based wireless access networks," in GLOBECOM, vol. 10, pp. 3444"3448, 2001.
    [16] J.-H. Yeh and J.-C. Chen, "Comparative analysis of IP mobility management protocols, " in ITechnical Report, Department of Computer Science, National Tsing Hua University,, feb 2005.
    [17] H. Schulzrinne and E. Wedlund, "Application layer mobility support using SIP," in ACM Mobile Computing and Communications Review, pp. 47"57, jul 2000.
    [18] B. Lloyd andW. Simpson, "PPP Authentication Protocols." IETF RFC 1334, Oct. 1992.
    [19] W. Simpson, "PPP Challenge Handshake Authentication Protocol(CHAP)." IETF RFC 1334, Aug. 1996.
    [20] T. Dierks and C. Allen, "The TLS Protocol." IETF RFC 2246, Jan. 1999.
    [21] C. Rigney, S.Willens, A. Rubens, andW. Simpson, "Remote authentication dial in user service (RADIUS)." IETF RFC 2865, June 2000.
    [22] L. Blunk and J. Vollbrecht, "PPP Extensible Authentication Protocol (EAP)." IETF RFC 2284, Mar. 1998.
    [23] B. Aboba and P. Calhoun, "RADIUS Support For Extensible Authentication Protocol (EAP)." IETF RFC 3579, Sept. 2003.
    [24] J.-C. Chen and Y.-P. Wang, "Extensible authentication protocol (EAP) and IEEE 802.1x: tutorial and empirical experience," in IEEE Communications Magazine,
    vol. 43, pp. S26"S32, Dec 2005.
    [25] S. Mink, F. Phlke, G. Schfer, and J. Schiller, "FATIMA: A Firewall-Aware Transparent Internet Mobility Architecture," in Fifth IEEE Symposium on Computers and Communications (ISCC), (Antibes-Juan les Pins, France), pp. 172"179, 2000.
    [26] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, "Diameter Base Protocol," Sept. 2003.
    [27] R. L. Rivest, A. Shamir, and L. M. Adelman, "A Method For Obtaining Digital Signatures and Public-key Cryptosystems," Tech. Rep. MIT/LCS/TM-82, 1977.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE