簡易檢索 / 詳目顯示

研究生: 林欣儀
Lin, Hsin-Yi
論文名稱: 柯倫步極大值原理在低階多項式的一些討論
Some remarks on Korenblum's maximum principle for polynomials of low degrees
指導教授: 程守慶
Chen, So-Chin
口試委員: 李大中
王國仲
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 15
中文關鍵詞: Korenblummaximum principle
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In 1991, Korenblum presented his conjecture on
    Bergman spaces. He speculated that if $f(z)$ and $g(z)$ are two
    holomorphic functions on the unit disc in the complex plane, then
    there exists a number $0<c<1$ such that the condition
    "$|f(z)|\geq|g(z)|$" could implies "$||f||_{2}\geq||g||_{2}$", where
    $||.||_{2}$ is the Bergman norm. This maximum principle was
    confirmed in 1999 by Hayman. It is not only an analogous property
    with $H^{p}$ spaces but also inspires numerous research in other
    function spaces. In this article we introduce the development of
    this problem and the related research results from which the idea
    originally came from Korenblum's maximum principle. In the end we
    give some discussions about the circumstances when the functions are
    constrained in the form of $\prod(z-a_{i})$ for $ -1 \leq a_{i} \leq
    1$.


    1. Introduction ...2 2. Main results ...10 References ...15

    1. B. Korenblum, A maximum
    principle for the Bergman space, Publ. Mat., 35, (1991), 479-486.

    2. B. Korenblum, and K. Richards, Majorization and Domination in the Bergman Space, Proc. Amer.
    Math. Soc., 117, (1993), 153-158.

    3. B. Korenblum, R. O'Neil, K. Richards and K. Zhu, Totally Monotone Functions with Applications to the
    Bergman Space, Trans. Amer. Math. Soc., 337, (1993), 795-806.

    4. J. Matero, On Korenblum's
    maximum principle for the Bergman space, Proc. Arch. Math.
    , 64, (1995), 337-340.

    5. W. Schwick, On Korenblum's
    maximum principle, Proc. Amer. Math. Soc., 125, (1997), 2581-2587.

    6. N. Danikas and W.K. Hayman, Domination on Sets and in $H^{p}$, Results Math., 34, (1998), 85-90.

    7. W. K. Hayman, On a conjecture of
    Korenblum, Analysis, 19, (1999), 195-205.

    8. A. Hinkkanen, On a maximum principle in Bergman space, J. Anal. Math., 79, (1999), 335-344.

    9. A. Schuster, The maximum principle for the Bergman space and the Mobius pseudodistance for the annulus, Proc. Amer. Math. Soc., 134, (2006), 3525-3530.

    10. C. Wang, Domination in the Bergman Space and Korenblum’s Constant, Integral Equations and
    Operator Theory, 61, (2008), 423--432.

    11. C. Wang, Behavior of the
    constant in Korenblum’s maximum principle, Math. Nachr., 281, (2008), 447-454.

    12. S.-C., Chen, On dominating sets
    for uniform algebra on pseudoconvex domains, Journal of Pure
    and Applied Mathematics Quarterly, special issue in honor of J. J. Kohn, 6, no. 3, (2010), 715-724.

    13. C. Wang, Some results on Korenblum's maximum principle, 373, (2011), J. Math. Anal. Appl., 393-398.

    14. S.-C., Chen, On dominating sets for Nevanlinna class (I), Taiwanese J. Math., 15, no.
    4, (2011), 1829-1840 .

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE