研究生: |
許立佑 Hsu, Li-Yu |
---|---|
論文名稱: |
三維人臉模型化與手勢辨識 3D Face Modeling and Recognition of Hand Gestures |
指導教授: |
陳永昌
Chen, Yung-Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 三維人臉模型 、手勢辦識 |
外文關鍵詞: | 3D Face Modeling, Hand Gestures Recognition |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來三維人臉辨識一直是重要的研究課題。因為二維的人臉辨識遭遇到很大的瓶頸,那就是它的辨識結果經常會受到不同拍攝角度和頭的姿勢所影響。相較之下,三維人臉辨識可以克服這個問題,所以它具有更高的辨識率。而處理三維的人臉辨識的第一步驟就是重建三維人臉模型。
在電腦視覺及圖學領域中,產生一個仿真的三維人臉模型已經被廣泛運用。
我們利用具有深度資訊的相機發展一個有紋理的三維人臉模型,此系統可以自動生成一個三維仿真的人臉模型,我們可以運用在它可以在很多領域,如三維人臉辨識、3D動畫、電腦遊戲和人機互動等。
一般日常生活中,人與電腦的的溝通主要是依靠鍵盤及滑鼠,可是這些方法對人而言都不是自然的溝通方式。理想的方式是透過我們的身體語言來傳達,所以對於人機互動,手勢辨識就特別地有吸引力,因此我們提出基於計算投影直方圖的方法來自動辨識手勢。
在這篇論文中,我們利用具有深度資訊的相機:SR-3000來取得深度資訊及灰階的二維影像,並運用這些資料來建立三維人臉模型及手勢辨識。此外我們還提出一個結合數位相機與SR-3000的方法,透過特殊的相機架設就可以很簡單地達成對位的效果,並且得到高解析度和彩色的資訊,最後利用這些資訊來建立三維人臉的彩色模型。
3D face recognition is an important research topic nowadays. The performance of a face recognition system degrades incredibly due to the variation of facial appearance with different pose, which is well known as one of the bottlenecks in face recognition. Comparing to the bottleneck on 2D face recognition and face synthesis technique, 3D face model has better accuracy and performance than 2D face image on recognition and synthesis. And the first step of 3D face recognition is 3D face modeling.
Generating realistic 3D human face models has been widely applied in computer vision and graphics. We have developed a system that constructs textured 3D face models from the depth camera. The system automatically generates a 3D human head model which can be used in many applications, such as 3D face recognition, 3D animation, video games, man-machine interface, and so on.
Nowadays, the communication between man and machine is done mainly by the use of devices like keyboard and mouse, which are not natural for man-machine communication. The ideal manner of communication is body language. Hence, gesture recognition of the hand is an extremely attractive method for user-computer interaction. We propose an approach which is based on projective histogram to detect the number of fingers automatically.
In this thesis, we use the range camera SR-3000 to acquire the depth information and intensity images. We apply these data to reconstruct 3D face model and recognize hand gestures.
Reference
[1] G. Yang and T. S. Huang, “Human Face Detection in a Complex Background’’, Pattern Recognition, Vol. 27, No.1, pp. 53-63, 1994
[2] B. Moghaddam and A. Pentland, “Maximum Likelihood Detection of Faces and Hands’’, Int. Workshop on Automatic Face- and Gesture-Recognition, pp. 122-128, Zurich, 1995.
[3] K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection’’, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 39-51, 1998.
[4] H. A. Rowley, S. Baluja and T. Kanade, “Neural Network- Based Face Detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 23-38, 1998.
[5] A. J. Colmenarez and T. S. Huang, “Face Detection With Information-Based Maximum Discrimination”, CVPR '97
[6] S. Lin, S. Kung and L. Lin, “Face Recognition/Detection by Probabilistic Decision-Based Neural Network”, IEEE Trans. Neural Networks, Vol. 8, No. 1, pp. 114-132, 1997.
[7] A. O'Toole, H. Abdi, K. A. Deffenbacher and D. Valentin, “Low-Dimensional Representation of Faces in Higher Dimensions of The Face Space”, Journal of The Optical Society of America. A, Optics, Image Science, and Vision, Vol. 10, No. 3, pp. 405-411, 1993.
[8] M. A. Turk and A. P. Pentland, “Face Recognition Using Eigenfaces”, IEEE Conf. Computer Vision and Pattern Recognition, pp. 586-591, 1991.
[9] W. Zhao, R. Chellappa and N. Nandhakumar, “Empirical Performance Analysis of Linear Discriminant Classifier”, Int. Conf. Computer Vision and Pattern Recognition, pp. 164-169, 1998.
[10] G. J. McLachlan, ”Discriminant analysis and statistical pattern recognition ”, New York Wiley, 1992.
[11] M. Jones and P. Viola, “Robust Real-time Object Detection”,. In Second International Workshop on Statistical and Computational Theories of Vision – Modeling, Learning, Computation, and Sampling, July 13, 2001
[12] Yoav Freund and Robert E. Schapire. “A decision-theoretic generalization of on-line learning and an application to boosting”. In Computational Learning Theory: Eurocolt ’95, pages 23–37. Springer-Verlag, 1995.
[13] U. Park and A. K. Jain, ”3D Model-based face Recognition in video”, The 2nd International Conference on Biometrics, Seoul, Korea, 2007
[14] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a factorization method”, International Journal of Computer Vision, vol. 9, no. 2, pp.137-154,1992
[15]. C. Poelman and T. Kanade, “ A paraperspective factorization method for shape and motion recovery,”IEEE Trans. Pattern Analysis and Machine Intelligence, 19(3):206-218, 1997.
[16] B. Triggs, “ Factorization methods for projective structure and motion,” Proc. Int. Conf. Computer Vision and Pattern Recognition,1996.
[17] V. Blanz and T. Vetter, “A Morphable Model for the Synthesis of 3D Faces”, Computer Graphics Proc. SIGGRAPH ’99, pp. 187-194, 1999
[18] Y. C. Cheng, “Analysis and Synthesis of Facial Expressions for Virtual Conferencing Systems”, Ph. D. Dissertation in National Tsing Hua University, EE Dept., 2003
[19] S. Von Duhn, L. Yin, M. J. Ko, and T. Hung, “Multiple-View Face Tracking For Modeling and Analysis Based On Non-Cooperative Video Imagery”, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2007
[20] R. O. Duda, P. E. Hart and D. G. Stork, “Pattern Classification”, 2nd Ed. Wiley-Interscience, pp.115-117,568, 2000
[21] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-based particle filter,” IVC(21), No.1, January 2003, pp.99-110.
[22] C. Shan, Y. Wei, T. Tan, and F. Ojardias, “Real time tracking by combining particle filtering and mean shift,” Automatic Face and Gesture Recognition (AFGR04), pp.669-674.
[23] K. Okuma, A. Taleg, N. de Freitas, J. Little, and D. Lowe, “A boosted particle filter: multitarget detection and tracking,” European Conference on Computer Vision, 2004.
[24] J. Vermaak, A. Doucet, and P. P´erez, “Maintaining multi-modality through mixture tracking,” International Conference on Computer Vision (ICCV), 2004.
[25] S. Zhou, R. Chellappa, and B. Moghaddam., “Appearance tracking using adaptive models in a particle filter,” Asian Conference on Computer Vision (ACCV), January 2004.
[26] X. Zhu, J. Yang, and A. Waibel, “Segmenting hands of arbitrary color,” Automatic Face and Gesture Recognition (AFGR00), pp.446-453.
[27] T. Morris and O. S. Elshehry, “Hand segmentation from live video,” In The 2002 Intl. Conference on Imaging Science, Systems, and Technology, UMIST, Manchester, UK,2002.
[28] M. Kass, A. Witkin and D. Terzopoulos, “Snake: Active contour model,” Int J. Computer Vision, Vol. 1, pp.321 – 331, 1987
[29] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” IJCV, Vol. 22, No.1, pp.61–79, 1997.
[30] A. Chakraborty, L. Staib, and J. Duncan, “Deformable boundary finding in medical images by integrating gradient and region information,” IEEE Trans. Med. Imag., Vol. 15, 1996.
[31] N. Paragios and R. Deriche, “Geodesic active regions for motion estimation and tracking,” in ICCV, Corfu Greece, 1999.
[32] F. Precioso and M. Barlaud, “B-Spline Active contour with handling of topology
changes for fast video segmentation,” JASP(2002), No. 6, June 2002, pp.555-560.
[33] D. Williams and M. Shah. “A fast algorithm for active contours and curvature estimation”, CVGIP: Image Understanding. Vol. 55, No. 1, January 1992, pp. 14-26.
[34] Swiss center for electronics and microtechnology. www.csem.ch/ (2005)
[35] Swissranger sr-2 miniature time of flight camera. www.swissranger.ch/ (2005)
[36] CSEM: Swiss ranger sr-3 datasheet. www.swissranger.ch/ pdf/SR-3 DataSheet.pdf (2007)
[37] Oggier, T., Michael Lehmann, Rolf Kaufmann, M.S., Richter, M., Metzler, P., Lang, G., Lustenberger and F., Blanc, N. ”An all-solid-state optical range camera for 3d real-time imaging with sub-centimeter depth resolution (swissranger),” In: SPIE,conference on optical system design, St. Etienne, September 2003. (2003)
[38] Oggier, T., B¨uttgen, B., Lustenberger, F., Becker, G., R¨uegg, B. and Hodac, A, “Swissranger sr3000 and first experiences based on miniaturized 3d-tof cameras. In: Proceedings,1st Range Imaging Research,” Day, September 8/9, 2005 at ETH ZurichSwitzerland. (2005) 97–108
[39] H. Rowley, S. Baluja, and T. Kanade. “Neural network-based face detection”. In IEEE Patt. Anal. Mach. Intell. volume 20, pages 22–38, 1998.
[40] K. Sung and T. Poggio. “Example-based learning for view-based face detection”. In IEEE Patt. Anal. Mach. Intell., volume 20, pages 39–51, 1998.