簡易檢索 / 詳目顯示

研究生: 李清閔
Ching-Min Li
論文名稱: 鐵T型微帶共振腔之鐵磁共振效應
The Ferromagnetic Resonance Effect on Fe Microstrip Resonator
指導教授: 呂助增
Juh-Tzeng Lue
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 62
中文關鍵詞: 鐵磁共振微波
外文關鍵詞: FMR, microwave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了決定設計微波電路原件時所要用到的參數,材料的物理性質量測是很重要的。本篇論文主要研究由材磁引發的鐵磁共振如何與結構共振產生交互作用,並提一個新的方法去量測飽和磁化強度、異向性磁場以及薄膜的電阻率。我們用HP 8722D網路分析儀對自製的T型微帶線作量測S參數,並且觀察外加磁場對S參數造成的變化。當外加磁場增加時,共振頻率的底部會先上升再下降;另外,共振頻率也會先往高頻處移動再往低頻處移動。共振頻率底部的變化量大約為4dB,而頻率的偏移大約為正負0.04GHz。異向性磁場約為-379.7高斯,飽和磁化強度為1255.7高斯。這些結果顯示,我們提供的方法可減化研究鐵磁薄膜性質的步驟。


    The physical property measurement of microwave materials is an important research topic to determine the accurate parameters in the design of circuit components. The purpose of this research is to present how the ferromagnetic resonance (FMR) interacts with the structure resonance and propose a new method to measure the saturation magnetization, the anisotropic field, and the conductivity of magnetic films. The T-microstrip resonator was fixed on the universal test fixture that was connected with the HP 8722D vector network analyzer, and applied an uniform magnetic field on the films in various directions. Then, the transmission coefficient S21 parameters were measured at various magnetic fields by a HP 8722D vector network analyzer. When the magnetic field was increased, the deep of the transmission coefficient S21 increased initially and then decreased; in addition, the resonance frequency shifted to the right and then shifted to the left. The variant range of the deep was about 4dB and the shift range of the frequency was from –0.04GHz to 0.04GHz. The simulated anisotropic field Ha was about -379.7 Gauss and the saturation magnetization Ms was 1255.7 Gauss. These results suggest that this method simplifies the procedure for studying the physical properties of magnetic thin films.

    Chapter 1 Introduction………………………………………1 Chapter 2 Theoretical Description of Microstrip… …2 2-1 Transmission Lines………………………………………2 2-1-1 General Transmission Line Equations………………2 2-1-2 Transmission Line Parameters………………………4 2-2 Microstrip…………………………………………………5 2-2-1 The Geometry of Microstrip…………………………5 2-2-2 Calculations for Microstrip Parameters…………6 2-3 Losses in Microstrip……………………………………8 2-3-1 Dielectric losses………………………………………9 2-3-2 Ohmic losses……………………………………………10 2-4 Technique to Measure Transmission Line Attenuation…11 Chapter 3 Theoretical Description of Ferromagnetic Resonance………15 3-1 Introduction……………………………………………15 3-1-1 Magnetic Induction and Magnetization…………15 3-1-2 Susceptibility and Permeability…………………15 3-1-3 Classification of Magnetic Materials…………16 3-2 Magnetic Anisotropy……………………………………19 3-2-1 Magnetocrystalline Anisotropy……………………19 3-2-2 Shape Anisotropy……………………………………22 3-3 Ferromagnetic Resonance………………………………24 3-3-1 Equations of Motion…………………………………25 3-3-2 Shape Effects in FMR………………………………25 Chapter 4 Experimental Equipment and Method…………28 4-1 Experimental Equipment………………………………28 4-1-1 Thermal Evaporation System………………………28 4-1-2 Vector Network Analyzer……………………………29 4-1-3 Magnet Power Supply…………………………………30 4-1-4 Four Point Measurement System……………………32 4-2 Fabrication of T-microstrip Resonator……………33 4-3 Measurement Procedure…………………………………34 Chapter 5 Results and Discussion………………………36 5-1 The Temperature Dependence of the Resistivity of the Iron Film…36 5-2 The High Frequency Measurement of the T-microstrip Resonator …37 5-3 Applying the Magnetic Field Parallel to the Film…38 5-3-1 Comparing with Nonmagnetic Materials…………39 5-3-2 The Variation of the Deep under the Different Magnetic Fields……41 5-3-3 The Variations of Q-factor, Attenuation, and Resistivity under the Different Magnetic Fields…………………43 5-4 Applying the Magnetic Field Perpendicular to the Film…………………………55 Chapter 6 Conclusions………………………………………59 References……………………………………………………60

    [1] H. T. Lue, J. T. Lue and T. Y. Tseng, “Microwave penetration depth measurement for high Tc superconductors by dielectric resonators,” IEEE Trans. Instrum. Meas., vol. 51, pp. 433–439, (2002).
    [2] J. H. Liu, Y. C. Lin, J. T. Lue and C. J. Wu, “ Resistivity measurements of layered metallic films at various microwave frequencies and temperatures using the micro-strip T-junction method,” Meas. Sci. Technol., vol. 13, pp. 1132–1137, (2002).
    [3] L. Bonalde, B. D. Yanoff, M. B. Salamon, D. J. Harlingen, E. M. Chia, Z. Q. Mao and Y. Macno, “Temperature dependence of the penetration depth in Sr2RuO4: evidence in the gap function,” Phys. Rev. Lett., vol. 85, pp. 4775–4778, (2000).
    [4] N. Cramer, D. Lucic, R. E. Camley and Z. Celinski , “High attenuation tunable microwave notch filters utilizing ferromagnetic resonance,” J. Appl. Phys., vol. 87, pp. 6911–6913, (2000).
    [5] M. Tsutsumi and S. Tamura, “Microstrip line filters using yttrium iron garnet film,” IEEE Trans. Microw. Theory Tech., vol. 40, pp. 400-402, (1992).
    [6] A. Dubey et. al., “Magnetically tunablemicrostripe resonator based on polycrystalline ferrite,” Electron. Lett., vol. 37, pp. 1296-1297, (2001).
    [7] J. Simsova, “Measurements of ferromagnetic resonance of single-crystal ferrite films,” IEEE Trans. Magnetics. vol. 5, pp. 483-484, (1969).
    [8] G. Srinivasan, A. S. Tatarenko and M. I. Bichurin, “Electrically tunable microwave filters based on ferromagnetic resonance in ferrite-ferroelectric bilayers,” IEEE Electronics Letters, vol. 41, pp. 596-598, (2005).
    [9] L. A. Blassberg, L. J. Lader and R. A. Young, “Ferromagnetic resonance absorption devices,” Electron Devices Meeting, vol. 1, pp. 29, (1955).
    [10] G. H. Thiess, J. Wrenn and O. Drefke, “Ferromagnetic resonance-tuned microwave oscillator,” Proceedings of the IEEE, vol. 51, pp. 865-866, (1963).
    [11] S. W. Chang, J. H. Liu, and J. T. Lue, “Coexistence of ferromagnetic resonance and microstrip resonance for nickel films under magnetic fields,” Meas. Sci. Tech, vol. 14, pp.583-588, (2003).
    [12] S. Y. Liao, Microwave Devices and Circuits. Prentice-Hall, 3rd ed, pp. 61-64, (1990).
    [13] P. A. Rizzi, Microwave Engineering Passive Circuits. Prentice Hall, pp. 57-60, (1988).
    [14] D. K. Cheng, Field and Wave Electromagnetics. Addison Wesley, 2nd ed, pp. 427-461, (1989).
    [15] T. C. Edwards, Foundations for Microstrip Circuit Design. Wiley, 2nd ed, pp. 41-63, (1992).
    [16] S. Y. Liao, Microwave Devices and Circuits. Prentice-Hall, 3rd ed, pp. 477-482, (1990).
    [17] J. D. Welch and H. J. Pratt, “Losses in microstrip transmission systems for integrated microwave circuits,” NEREM Rec., vol. 8, pp. 100-101, (1966).
    [18] R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in microstrip,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-16, No. 6, pp. 342-350, (1968).
    [19] R. A. Pucel, D. J. Masse, and C. P. Hartwig, Correction to “Losses in microstrip,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-16, No. 12, pp. 1064, (1968).
    [20] H. A. Wheeler, “Transmission-line properties of parallel strips separated by a dielectric sheet,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-13, pp. 172-185, March (1965).
    [21] J. D. Cockcroft, “Skin effect in rectangular conductors at high frequencies,” Proc. Roy. Sot. (London), vol. 122, pp. 533–542, (1929).
    [22] M. Caulton, J. J. Hughes, and H. Sobol, “Measurements on the properties of microstrip transmission lines for microwave integrated circuits ,” RCA Rev., vol. 27, pp. 377–391, (1966).
    [23] G. D. Vendelin, “High-dielectric substrate for microwave hybrid integrated circuitry,” IEEE Trans. on Microwave Theory and Techniques(Correspondence), vol. MTT-15, pp. 750-752, December (1967).
    [24] J. Carroll, M. Li, and K. Chang, “New technique to Measure Transmission Line Attenuation,” IEEE Trans. on Microwave Theory and Techniques, vol. 43, no. 1, pp. 219-222, Jan. (1995).
    [25] M. Goldfarb and A. Platzker, “Losses in GaAs microstrip,” IEEE Trans. on Microwave Theory and Techniques, vol. 38, no. 12, pp. 1957-1963, Dec. 1990.
    [26] G. Gonzalez, Microwave Transisfor Amplifiers. Englewood Cliffs: N.J., Prentice-Hall, pp. 18-19, (1984).
    [27] D. Pozar, Microwave Engineering. Reading MA: Addison-Wesley, p.332, (1990)
    [28] M. Kirschning, R. H. Jansen, and N. H. L. Koster, “Accurate model for open end effect of microstrip lines,” Electron. Lett., vol. 17, no. 3, pp.123-125, Feb. (1981).
    [29] Nicola A. Spaldin, Magnetic Materials: Fundamentals and Device Applications. Cambridge University Press, (2003).
    [30] Raymond A. Serway and Robert J. Beichner, Physics for Scientists and Engineers with Modern Physics. Saunders College Publishing, 5th ed, pp. 960-963, (2000).
    [31] B.D. Cullity, Introduction to Magnetic Materials. Addison-Wesley, (1972).
    [32] Charles Kittel, Introduction to solid state physics. Wiley, 8th ed, (2005).
    [33] Dieter K. Schroder, Semiconductor Material and Device Characterization, Wiley, 2nd ed, (1998).
    [34] A. A. Abrikosov, Fundamentals of the theory of metals, North-Holland, (1988).
    [35] A. Brataas, G. Tatara, and G. E. W. Bauer, “Ballistic and diffuse transport through a ferromagnetic domain wall,” Physical Review B, vol. 60, no. 5, pp. 3406-3413, (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE