簡易檢索 / 詳目顯示

研究生: 陳昕揚
Chen, Xing-Yang
論文名稱: 奈米銀墨水乾燥行為及對聚亞醯胺基板黏著特性之研究
Drying behavior and adhesion of nano-silver ink on polyimide substrate
指導教授: 周更生
Chou, Kan-Sen
口試委員: 竇維平
衛子健
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 110
中文關鍵詞: 表面粗糙度黏著噴砂奈米銀聚亞醯胺
外文關鍵詞: Surface Roughness, adhesion, sandblasting, silver colloids, polyimide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對聚亞醯胺(polyimide,PI)表面增加粗糙度(Surface Roughness),分別使用FEPA規範型號為F280、F240、F220與F150氧化鋁(Alumina)顆粒,以不同空氣壓力對聚亞醯胺表面進行噴砂,使用壓力為0.15x106帕(Pa)至0.5x106帕(Pa),結果發現粗糙度隨著氧化鋁粒徑上升及壓力提升也隨之上升,並且均勻度相當好,粗糙度範圍在118–1189nm間,標準差皆為平均粗糙度的10%以內。
    使用噴砂後的聚亞醯胺,以刮刀塗布上溶劑為水的奈米銀懸浮液,經過乾燥後,用高溫爐以220℃與280℃燒結20分鐘,再依American Society for Testing and Materials (ASTM) D3359與D4541規範測試奈米銀顆粒與PI基板之黏著性,將兩規範做相關性連結,得到其相對範圍。實驗結果為奈米銀對聚亞醯胺黏著隨粗糙度增加而上升,且可到達ASTM D3359的5B等級(最高)。
    然而提升PI基板表面粗糙度雖有助於黏著性的提升,缺點為銀膜的體積電阻率也會上升。最佳值為使用型號F220的氧化鋁顆粒,使用0.4MPa的壓力噴砂兩次,使PI基板的粗糙度改善至792nm,塗上奈米銀後以280℃燒結,可得體積電阻率為1.48 x10-5Ω・cm的銀膜,電阻率大約為塊材銀(bulk silver)的9.4倍。當長度為11µm的銀絲3wt%取代12wt%銀顆粒後,與未加銀絲取代銀顆粒相比可改善13%的片電阻,且銀的使用量可以減少22.5%。
    液滴乾燥研究中,液滴中奈米銀的濃度(固含量)會影響咖啡環的形成與其寬度,濃度0.08wt%以下將不會有咖啡環的形成。且液滴體積越大,環的寬度將增加。將溶劑為水的奈米銀懸浮液加入正丙醇,可降低液滴與玻璃之接觸,當正丙醇濃度為10wt%,有助於咖啡環的形成。奈米銀濃度為0.08wt%,液滴體積為1µL,正丙醇濃度為10wt%的水溶液,液滴乾燥後可得到咖啡環寬度為6.7微米(µm),環內約300微米距離較少銀奈米粒子殘留。


    The technique of sandblasting was utilized in this study on polyimide (PI) substrate. Alumina particles, F280, F240, F220, F150 (FEPA nomenclature) under air pressure 0.15x106 Pa to 0.50x106 Pa was used here. It was found that the average surface roughness of PI substrate increased with particle size and air pressure. The range of roughness was between 118 – 1189 nm, while the standard deviation was within 10% of average roughness suggesting reasonable uniformity of the process.
    After sandblasting, the PI substrate was coated by silver ink by the doctor blade method. Solvent of the ink was water. The sample was then sintered at 220℃ and 280℃ for 20 minutes and then tested for adhesion by ASTM D3359 and D4541, with the intention to establish definite correlation between these two methods. Our results showed that the adhesion between silver colloids and PI substrate increased with increasing surface roughness and could reach the highest 5B level for rough PI substrate.
    Nevertheless the increase in adhesion was accommodated by simultaneous increase in electrical resistivity of silver film after sintering. The optimal condition after compromise was: using F220 particle, 0.4 MPa air pressure to increase surface roughness to 792 nm. The adhesion level could reach 5B level and the electrical resistivity was 1.48x10-5 Ω-cm (about 9.4 times bulk value). If we substitute 12 wt% silver colloid by 3 wt% silver nanowire (11 micron in length), we could improve about 13% in electrical resistivity while the total quantity of silver was reduced by 22.5%.
    On the study of drying behavior of ink droplet, it was found that coffee ring would not form when the solid content was below 0.08 wt%. It was also found that the ring width increased with droplet volume. Adding n-propanol would reduce the contact angle between ink and glass substrate. When the solid content was 0.08 wt%, droplet volume of 1 µl, 10% propanol in the solvent, one would obtain a good quality ring with width of 6.7 µm and almost no particles were observed within 300 µm from the ring.

    摘要 I 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 2 2.1黏附機制介紹 2 2.1.1幫助奈米銀對基板的黏著方法 4 2.1.1.1 在奈米銀墨水中加入介質 4 2.1.1.2 對基板表面做化學處理 5 2.1.1.3 粗糙化基材表面 6 2.2.2濕式噴沙法表面處理 11 2.2.3乾式噴沙法表面處理 12 2.3 銀奈米顆粒在噴墨上的應用 15 2.3.1墨水固含量對墨水乾燥後的影響 15 2.3.2 墨水塗佈後的線寬 16 2.3.3 墨水塗佈後的厚度 18 2.3.4 墨水噴塗後的表面型態 19 2.4 表面張力與黏度 27 2.4.1 表面張力 28 2.4.2 黏度 34 第三章 實驗 39 3.1實驗藥品 39 3.2實驗儀器 41 3.3實驗流程 44 3.3.1 以乾式噴砂法增加表面粗糙度 44 3.3.1.1 以乾式噴砂法增加PET表面粗糙度 44 3.3.1.2 以乾式噴砂法增加PI表面粗糙度 44 3.3.2 測試銀奈米粒子與PI基板之黏著性 44 3.3.2.1 以ASTM D3359規範測試銀奈米粒子與PI基板之黏著性 44 3.3.2.2 以ASTM D4541規範測試銀奈米粒子與PI基板之黏著性 45 3.3.3 以四點探針測量塗佈於不同粗糙度之PI燒結後銀膜的導電率 45 3.3.4 銀絲墨水混合奈米銀墨水 46 3.3.4.1 銀絲墨水加入奈米銀墨水 46 3.3.4.2 銀絲墨水取代奈米銀墨水 46 3.3.5 液滴乾燥後的型態 46 3.3.5.1 改變液滴固含量 46 3.3.5.2 改變液滴成分 47 3.4 分析方法 47 3.4.1表面粗糙度 47 3.4.2 Standard Test Methods for Measuring Adhesion by Tape Test (ASTM D3359-08) 49 3.4.3 Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers (ASTM D4541-95) 51 3.4.4 四點探針原理 52 第四章 實驗結果與討論 54 4.1以乾式噴砂法增加表面粗糙度 54 4.1.1 以乾式噴砂法增加PET表面粗糙度 54 4.1.2 以乾式噴砂法增加PI表面粗糙度 61 4.2 測試銀奈米粒子與PI基板之黏著性 68 4.2.1以ASTM D3359規範測試銀奈米粒子與PI基板之黏著性 68 4.2.2以ASTM D4541規範測試銀奈米粒子與PI基板之黏著性 72 4.3 以四點探針測量塗佈於不同粗糙度之PI燒結後銀膜的導電率 76 4.4銀絲墨水混合奈米銀墨水 80 4.4.1 銀絲墨水加入奈米銀墨水 80 4.4.2 銀絲墨水取代奈米銀墨水 81 4.5 液滴乾燥後的型態 85 4.5.1 改變液滴濃度 85 4.5.2 改變液滴成分 92 第五章 結論 104 第六章 參考文獻 106

    Chow T. S. ,“Size-dependent adhesion of nanoparticles on rough surfaces”,Journal of Physics: Condensed Matter, 15, 83(2003)
    Costa H.F. ,H. Lourenco, I. Johnson, F. A. M. M. Gonc, A. G. M. Ferreira, and I. M. A. Fonseca,“Liquid-Liquid Equilibria , Density, Viscosity, and Surface and Interfacial Tension of the System Water + n-Butyl Acetate + 1-Propanol at 323.15 K and Atmospheric Pressure”,Journal of Chemical& Engineering Data, 54, 2845(2009)
    Deegan R.D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops”,Nature, 389, 827(1997)
    Deegan R.D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop”, Physical Review E,62, 756(2000)
    Fu J. F., B. Q. Li., and H. Wang, “Estimation of Fluid Fluid Interfacial-Tensions of Multicomponent Mixtures”, Chemical Engineering Science, 41, 2673(1986)
    Gadelmawla E.S., M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters”, Journal of Materials Processing Technology, 123, 133(2002)
    Gascón I., J. Pardo, J. Santafé, M. Donguez, and J. S. Urieta ,“Experimental and predicted viscosities of the binary system (n-hexane + 1,3-dioxolane) and for the ternary system (n-hexane+ 1,3-dioxolane + 1-butanol) at 298.15 and 313.15 K”,Fluid Phase Equilibria, 180, 211(2001)
    Hua H., and R. G. Larson,“Marangoni effect Reverses Coffee-Ring Depositions”, Journal of Physical Chemistry B, 110, 7090(2006)
    Jang D., D. Kim, B. Lee, S. Kim, M. Kang, D. Min, and J. Moon,“Nanosized Glass Frit as an Adhesion Promoter for Ink-JetPrinted Conductive Patterns on Glass Substrates Annealed at High Temperatures”,Advanced function materials, 18, 2862(2008)
    Jeon B.J.,S. Lee, and J. K. Lee,“Adhesion characteristics of copper thin film deposited on PET substrate by electron cyclotron resonance–metal organic chemical vapor deposition”,Surface & Coatings Technology, 202, 1839(2008)
    Jeong S., H. C. Song, W. W. Lee, Y. Choi, and B. H. Ryu ,“Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film”,Journal of Applied Physics, 108, 102805(2010)
    Jeong S., H. C. Song, W. W. Lee, Y. Choi, S.S. Lee, and B.H. Ryu,“Combined Role of Well-Dispersed Aqueous Ag Ink and the Molecular Adhesive Layer in Inkjet Printing the Narrow and Highly Conductive Ag Features on a Glass Substrate”,Journal of Physical Chemistry C, 114,22277(2010)
    Joo S. and D. F. Baldwin,“Adhesion mechanisms of nanoparticle silver to substrate materials: identification”,Nanotechnology, 21, 055204(2010)
    Kim D., S. Jeong, B. K. Park, and J. Moon,“Direct writing of silver conductive patterns: Improvement of film orphology and conductance by controlling solvent compositions”,Applied Physics Letters, 89, 264101(2006)
    Kosmala A. ,Q. Zhang, R. Wright, and P. Kirby,“Development of high concentrated aqueous silver nanofluid and inkjet printing on ceramic substrates”, Material Chemistry and Physics, 132, 788(2012)
    Layani M., M. Gruchko, O. Milo, I. Balberg, D. Azulay , and S. Magdassi,“Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature”,ACS Nano, 3, 3537(2010)
    Li C., W. Wang, and Z. Wang,“A surface tension model for liquid mixtures based on the Wilson equation”,Fluid Phase Equilibria, 175, 185(2000)
    Marsh K.N.,“A general method for calculating the excess Gibbs free energy from isothermal vapour-liquid equilibria ”,The Journal of Chemical Thermodynamics, 9, 719 (1977)
    Noda K., and K. Ishida, “Correlation and Prediction of the viscosity of Liquid mixture”, Journal of Chemical Engineering of Japan, 10, 478(1977)
    Noeske M., J. Degenhardt, S. Strudthoff, and U. Lommatzsch,“Plasma jet treatment of five polymers at atmospheric pressure : surface modification and the relevance for adhesion”,International Journal of Adhesion & Adhesive, 24, 171(2004)
    Pando C., J. A. R. Renuncio, J. A. G. Calzon, J. J. Christensen, and R. M. Izatt, “Correlation and Prediction of Ternary Excess Enthalpy Data ”,Journal of Solution Chemistry, 16, 503(1987)
    Park J., and J. Moon,“Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing”,Langmuir, 22, 3506(2006)
    Santos B.M.,A. G. M. Ferreira, and I.M.A. Fonseca,“Surface and interfacial tensions of the systems water + n-butylacetate + methanol and water + n-pentyl acetate +methanol at 303.15 K”,Fluid Phase Equilibria,208, 1(2003)
    Smith P. J., D. Y. Shin, J. E. Stringer, B. Derby, and N. Reis,“Direct ink-jet printing and low temperature conversion of conductive silver patterns”,Journal of Material Science, 41, 4153(2006)
    Sonawane P. D., and A. Kumar,“A new equation for the correlation of surface tension–composition data of solvent–solvent and solvent–fused salt mixtures”,Fluid Phase Equilibria, 157, 17(1999)
    Tee D. I. ,M. Mariatti, A. Azizan, A. Azizan, and K. F. Chong, “Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites ”,Composites Science and Technology, 67, 2584(2007)
    Uelzen Th., and J. Muller,“Wettability enhancement by rough surfaces generated by thin film technology”,Thin Solid Films, 434, 311(2003)
    Valdest L.B.,“Resistivity Measurements on Germanium for Transistors”, Proceedings of the IEEE, 42, 420(1954)
    Vaquez G.,E. Alvarez, and J. M. Navaz,“Surface Tension of Alcohol + Water from 20 to 50 "C”,Journal of Chemical Engineering Data, 40, 611(1995)
    Venables J. D.,“Adhesion and durability of metal-polymer bonds”,Journal of Material
    Science, 19, 2431(1984)
    Xu W., J. S. Yang, and T. J. Lu, “Ductility of thin copper films on rough polymer substrates”,Materials and Design, 32, 154(2011)
    Zhang Y.,S.Yang,L.Chen,and J.R.G.Evans,“Shape Changes during the Drying of Droplets of Suspensions”,Langmuir, 24, 3752(2008)

    Zhang H.,H. Zhang, L. Tang, Z .Zhang, L. Gu, Y. Xu, and C. Eger,“Wear-resistant and transparent acrylate-based coating with highly filled nanosilica particles”,Tribology International, 43, 83(2010)
    高振裕“軟性電子之印刷式奈米材料與元件研究”清華大學論文,台灣,新竹(2010)
    Sung Chul Joo“Adhesion Mechanisms of nano-particle silver to electronic packing materials” Thesis of Georgia Institute of Technology, USA, Georgia, Atlanta(2009)

    Standard Test Methods for Measuring Adhesion by Tape Test (ASTM D3359-08)

    Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers (ASTM D4541-95)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE