研究生: |
游子萱 Yu, Tzu-Hsuan |
---|---|
論文名稱: |
發展具有獨立細胞培養空間及應需檢測器的微流體晶片應用於篩選分泌抗體的單克隆細胞 Development of a microfluidic device containing isolated cell culture space and on-demand detectors for screening secreted antibody from monoclonal cells |
指導教授: |
許佳賢
Hsu, Chia-Hsien |
口試委員: |
黃正昇
Huang, Cheng-Sheng 陳之碩 Chen, Chi-Shuo 陳致真 Chen, Chih-chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 微流體晶片 、單細胞培養 、獨立細胞培養空間 、篩選 、抗體 、單株細胞 |
外文關鍵詞: | microfluidic device, single cell culture, isolated cell culture space, screening, antibody, monoclonal cells |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單克隆細胞的抗體檢測主要用於選擇雜交瘤細胞和轉染的中國倉鼠卵巢細胞 (Chinese hamster ovary cell ; CHO cell)。經過篩選的雜交瘤細胞和轉染的中國倉鼠卵巢細胞可產生單株抗體以提供傳染病,腫瘤,關節炎,免疫疾病和代謝疾病的治療。然而,在雜交瘤細胞形成和中國倉鼠卵巢細胞轉染期間,會有不產抗體的細胞以及產抗體的細胞產出,這導致其難以獲得特異性抗體並且降低其有效治療,所以篩選單克隆細胞在製備治療用抗體是重要的。一般篩選方法使用有限稀釋或半固體培養基技術來分離成單細胞,並且在培養幾週後,用酵素結合免疫吸附分析法(Enzyme-linked immunosorbent assay ; ELISA)檢測細胞培養的培養液,進而篩選會產抗體的細胞,但是此種篩選方式需要付出高成本的時間和勞動力。為了減少篩選細胞所需的成本,本研究將以提高篩選單克隆細胞的效率開發一種微流體晶片。本晶片上有三種結構:雙孔,柱子和收集孔。雙孔結構提供抓取單細胞及培養能力;柱子結構藉由不互溶的液體,產生分離的液滴並建立獨立檢測空間;收集孔結構是為了均勻收集作為探測器的玻璃微泡,以提供一致的檢測標準和提升螢光訊號。根據上述功能,本裝置被視為依據抗體檢測篩選單克隆細胞的快速平台並且在未來有機會取代傳統的方法。
Antibody detection of the monoclonal cell is mainly used in the selection of hybridoma and transfected CHO cell (Chinese hamster ovary cell). The screened hybridoma and transfected CHO cells can produce monoclonal antibody (mAbs) to provide treatment of infectious diseases, tumors, immune diseases, and metabolic diseases. However, during hybridoma formation and CHO cell transfection, there are non-antibody-producing cells and antibody-producing cells, which results in difficulty in obtaining specific antibodies and the reduction of their therapeutic validity. Therefore, screening monoclonal cells is important in the antibody-based therapeutics. The conventional screening method uses limiting dilution or semi-solid medium technology to isolate transfected cells into single cells and after culturing for several weeks, medium drawn from cell culture is detected by ELISA (Enzyme-linked immunosorbent assay) to select monoclonal cells. This method requires a significant amount of time and labor, which causes monoclonal antibodies to be expensive. To reduce the cost of screening, this research aims to develop a microfluidic device to increase the screening efficiency of monoclonal cells. The device has three structures: dual wells, pillars, and collection well. Dual-well structure provides single cell capture and culture function. Pillars can create isolated droplets and build independent detection space when an immiscible liquid flows through this structure. Collection well structure is to evenly collect glass microbubbles as detectors to supply the same benchmark of detection and enhance the fluorescence signal. According to the above functions of the device, the device is considered as a platform to screen monoclonal cells based on antibody detection and it will have a chance to replace the conventional method in the future.
1. Mahmuda, A., et al., Monoclonal antibodies: A review of therapeutic applications and future prospects. Tropical Journal of Pharmaceutical Research, 2017. 16(3): p. 713-722.
2. Weiner, G.J., Building better monoclonal antibody-based therapeutics. Nature Reviews Cancer, 2015. 15(6): p. 361.
3. Ryman, J.T. and B. Meibohm, Pharmacokinetics of monoclonal antibodies. CPT: pharmacometrics & systems pharmacology, 2017. 6(9): p. 576-588.
4. Ecker, D.M., S.D. Jones, and H.L. Levine. The therapeutic monoclonal antibody market. in MAbs. 2015. Taylor & Francis.
5. Bradbury, A. and A. Plückthun, Reproducibility: Standardize antibodies used in research. Nature News, 2015. 518(7537): p. 27.
6. Moorkens, E., et al., Overcoming barriers to the market access of biosimilars in the European Union: the case of biosimilar monoclonal antibodies. Frontiers in Pharmacology, 2016. 7: p. 193.
7. Grilo, A.L. and A. Mantalaris, The increasingly human and profitable monoclonal antibody market. Trends in biotechnology, 2019. 37(1): p. 9-16.
8. company, A.C.T.I.P. Monoclonal Antibodies Approved by the EMA and FDA for Therapeutic Use (status 2017). 2017 May 18, 2017]; Available from: http://www.actip.org/products/monoclonal-antibodies-approved-by-the-ema-and-fda-for-therapeutic-use/.
9. Pandey, S., Hybridoma technology for production of monoclonal antibodies. Hybridoma, 2010. 1(2): p. 017.
10. Saeed, A.F., et al., Antibody engineering for pursuing a healthier future. Frontiers in microbiology, 2017. 8: p. 495.
11. Ganguly, S. and R. Wakchaure, Hybridoma technology: a brief review on its diagnostic and clinical significance. Pharm. Biol. Evaluations, 2016. 3(6): p. 554-555.
12. Fischer, S., et al., miRNA engineering of CHO cells facilitates production of difficult‐to‐express proteins and increases success in cell line development. Biotechnology and bioengineering, 2017. 114(7): p. 1495-1510.
13. Hu, P., et al., Single cell isolation and analysis. Frontiers in cell and developmental biology, 2016. 4: p. 116.
14. Jin, L., et al., Cells with surface expression of CD133highCD71low are enriched for tripotent colony-forming progenitor cells in the adult murine pancreas. Stem cell research, 2016. 16(1): p. 40-53.
15. Shi, X., P. Chakraborty, and A. Chaudhuri, Unmasking tumor heterogeneity and clonal evolution by single-cell analysis. J Cancer Metastasis Treat, 2018. 4: p. 47.
16. Greenfield, E.A., Generating monoclonal antibodies. A Labratory Man, 2014: p. 201-221.
17. Du, G., Q. Fang, and J.M. den Toonder, Microfluidics for cell-based high throughput screening platforms—A review. Analytica chimica acta, 2016. 903: p. 36-50.
18. Hosic, S., S.K. Murthy, and A.N. Koppes, Microfluidic sample preparation for single cell analysis. Analytical chemistry, 2015. 88(1): p. 354-380.
19. Seah, Y.F.S., H. Hu, and C.A. Merten, Microfluidic single-cell technology in immunology and antibody screening. Molecular aspects of medicine, 2018. 59: p. 47-61.
20. El Debs, B., et al., Functional single-cell hybridoma screening using droplet-based microfluidics. Proceedings of the National Academy of Sciences, 2012. 109(29): p. 11570-11575.
21. Duncombe, T.A., A.M. Tentori, and A.E. Herr, Microfluidics: reframing biological enquiry. Nature Reviews Molecular Cell Biology, 2015. 16(9): p. 554.
22. Zhu, Z. and C.J. Yang, Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Accounts of chemical research, 2016. 50(1): p. 22-31.
23. Theberge, A.B., et al., Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angewandte Chemie International Edition, 2010. 49(34): p. 5846-5868.
24. Bocchi, M. and R. Guerrieri, Rapid screening of monoclonal antibodies. 2013, Google Patents.
25. Shembekar, N., et al., Single-cell droplet microfluidic screening for antibodies specifically binding to target cells. Cell reports, 2018. 22(8): p. 2206-2215.
26. Love, J.C., et al., A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nature Biotechnology, 2006. 24: p. 703.
27. Guo, M.T., et al., Droplet microfluidics for high-throughput biological assays. Lab on a Chip, 2012. 12(12): p. 2146-2155.
28. Lin, C.-H., et al., A microfluidic dual-well device for high-throughput single-cell capture and culture. Lab on a Chip, 2015. 15(14): p. 2928-2938.
29. Juang, D.S. and C.-H. Hsu, Self-concentrating buoyant glass microbubbles for high sensitivity immunoassays. Lab on a Chip, 2016. 16(3): p. 459-464.
30. Kang, M., et al., Capillarity Guided Patterning of Microliquids. Small, 2015. 11(23): p. 2789-2797.
31. Hur, S.C., A.J. Mach, and D. Di Carlo, High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics, 2011. 5(2): p. 022206.