簡易檢索 / 詳目顯示

研究生: 嚴陶陶
Yen, Tao-Tao
論文名稱: 基於C#的計算神經科學教學軟體 使用者界面的設計與實現
Design and Implementation of the Graphic User Interface Based on C# Language for Computational Neuroscience Courses
指導教授: 羅中泉
Lo, Chung-Chuan
口試委員: 施奇廷
Shih, Chi-Tin
陳俊仲
Chen, Chun-Chung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 50
中文關鍵詞: 計算神經科學教學軟體使用者界面WinForm關聯性記憶
外文關鍵詞: Computational neuroscience, Educational software, Graphical user interface(GUI), WinForm, Associative memory
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經科學旨在研究大腦中神經元對於認知功能的作用機制,為此前人學者試圖從計算層面出發,通過構建模型對神經的動態變化進行模擬和研究,從而誕生了計算神經科學。作為一門新興的融合了多學科知識的交叉學科,計算神經科學近年來逐漸受到腦科學領域的重視,也吸引了諸多試圖步入該領域的學生的興趣。為此,本文為計算神經科學課程設計了基於C#語言的可用於Windows系統下的教學軟體使用者界面,通過系統的規劃和簡易的操作來幫助新接觸這個領域的用戶輕鬆便利地學習計算神經科學這門課程並了解人工神經網路。本文的主要工作包括:
    ①介紹了計算神經科學的概念與發展,並對神經網路模型進行了解讀,選擇Flysim神經網路模擬器作為本文的技術支持,但由於該模擬器原本應用於Linux環境下,因此借助Cygwin搭建類Unix環境,在Cygwin中重新編譯,並依靠cygwin1.dll支持,將其移植到Windows系統下。
    ②基於C#設計了可用於計算神經科學課程教學的使用者界面,並針對用戶的學習程度,設計了適用於初學者和適用於進階者的不同界面:在初學者界面中,各項實驗參數都已設定好只需直接運行即可;而在進階者界面,用戶可以根據自己的需求調整參數,使實驗更為靈活,也具有更大的探索空間。
    ③為驗證本軟體的應用性,選用關聯性記憶實驗進行測試。在實驗中共有十顆神經元模型,以其中四顆為一個記憶項目(item)進行學習,通過刺激已經學習的神經元來觀測整體是否具有被喚起記憶,實驗證明當刺激其中三顆神經的時候,記憶能夠被喚起。同時本文還對兩個具有部分相同神經元的記憶項目進行了測試,可以觀察到相同的神經元數量會影響喚起記憶的條件,並且存在記憶錯誤的現象。最後本文還對神經傳遞過程中的雜訊做了模擬,觀察到微弱的雜訊並不會對記憶能否被喚起造成影響,但隨著雜訊不斷增大,可能會改變記憶喚起的結果。證實了本軟體在對神經網路的學習和研究中可以發揮作用。


    Neuroscience aims to study the neural mechanisms of cognitive function. In the past, scholars have tried to calculate and study the dynamics of nervous systems by constructing models from the computational level, thus giving birth to computational neuroscience. As an emerging interdisciplinary research field, computational neuroscience has gradually received attention from brain scientists in recent years, and has also attracted the interest of many students who want to enter this field. The purpose of this study is to design a graphical user interface based on C# language for a neural network simulator and integrate the system into a package that can be used as educational software in computational neuroscience courses. Through the systematic planning and simple operation, it may help new users in this field to learn computational neuroscience more easily and conveniently. This thesis comprises the following work:
    ①Introducing the development of computational neuroscience, and several important neural network models. I selected the Flysim neural network simulator as the supporting simulator for my system. Because the simulator was originally developed in the Linux environment, I had to build the system with the help of Cygwin Unix-like environment, recompile Flysim in Cygwin, and use cygwin1.dll to port it to the Windows system.
    ②Based on C#, I designed a graphical user interface that can be used in the teaching of computational neuroscience courses, and designed different interfaces suitable for beginners and advanced users according to the user's learning level. In the beginner interface, all of experimental parameters have been set and the simulations can be performed directly. In the advanced interface, users can adjust the parameters according to their own needs, making the experiment more flexible and having greater exploration space.
    ③In order to verify the applicability of this software, I selected the associated memory experiment for testing. In the experiment, there are a total of ten neuron models, and each memory item takes four neurons out of the ten. I simulated partial neurons of a memory item and observed whether the whole memory has been recalled. This experiment proves that when three neurons in the item are stimulated, memory can be recalled. Besides, I also tested two memory items with shared neurons. The result showed that the number of shared neurons affect the conditions for recalling memory, and there were memory errors. Finally, I also tested the effect of noise in memory. The result indicated that while weak noise did not affect memory recall, as the noise continued to increase, it changed the result of memory recall.
    The result presented in the thesis confirmed that the software I designed serves an excellent platform for learning and research in computational neuroscience.

    摘 要 I Abstract II 1 背景 1 1.1 計算神經科學概述 1 1.2 關聯性記憶 2 1.2.1 關聯性記憶概述 2 1.2.2 錯誤記憶概述 3 1.3 計算神經科學教學軟體設計目的及意義 3 1.4 技術支持——Flysim模擬器 3 2 使用者界面設計 6 2.1 功能需求分析 6 2.1.1 課程管理需求 6 2.1.2 教學需求 7 2.2 設計理念 8 2.3 設計框架 9 2.4 主界面 10 2.5 進階學習界面 11 2.6 繪圖界面 12 3 關聯性記憶實驗 14 3.1 關聯性記憶神經網路的發展 14 3.2 教學軟體在關聯性記憶實驗中的應用 16 3.2.1 神經元對關聯性記憶的影響 16 3.2.2 重疊神經元對記憶錯誤的影響 21 3.2.3 雜訊對關聯性記憶的影響 34 4 總結與展望 37 4.1 總結 37 4.2 未來工作展望 38 致謝 39 參考文獻 40 附錄(network.conf) 43

    [1] James.W. The Principles of Psychology. New York: Henry Holt and Company the Principles of Psychology, 1890.
    [2] McCulloch.W.S , Pitts.W. A Logical Calculus of the Ideas Immanent in Nervous Activity[J]. Bulletin of Mathematical Biology, 1943,(5): 115-133.
    [3] Hebb. D.O. The Organization of Behaviour[J]. Wiley & Sons, New York.
    [4] Hodgkin, A.L. and Huxley, A.F. A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve[J]. The Journal of Physiology, 1949, 117: 500-544.
    [5] Reichardt W. Autocorrelation, a Principle for the Evaluation of Sensory Information by the Central Nervous System[M], Sensory Communication. 1961.
    [6] W. Rall. Electrophysiology of a dendritic neuron model. Bioph. J., vol. 2, pp. 145-167 1962.
    [7] Parallel Distributed Processing: Explorations in the Microstructure of Cogni- tion. Vol. 1: Foundations, Vol. 2: Psychological and Biological Models, David E. Rumelhart, James L. McClelland, and the PDP Research Group. MIT Press, Cambridge, MA, 1986.
    [8] Churchland P , Sejnowski T . Perspectives on cognitive neuroscience[J]. Science, 1988, 242(4879):741-745.
    [9] Susanne Kunkel, Tobias C. Potjans:Meeting the Memory Challenges of Brain-Scale Network Simulation. Frontiers Neuroinformatics 5: 35 (2011)
    [10] Bosch H , Kurfess F J . Information Storage Capacity of Incompletely Connected Associative Memories[J]. Neural Networks, 1998, 11(5):869-876.
    [11] 隗兵. Hopfield聯想記憶神經網絡的容量研究及其應用[D].
    [12] D.I Donaldson, M.D Rugg. Event-related potential studies of associative recognition and recall: electrophysiological evidence for context dependent retrieval processes[J]. Brain Research Cognitive Brain Research, 1999, 8(1):1.
    [13] Lepage M , Brodeur M , Bourgouin P . Prefrontal cortex contribution to associative recognition memory in humans: an event-related functional magnetic resonance imaging study[J]. Neuroence Letters, 2003, 346(1-2):73-76.
    [14] Rugg M D , Cox C J C , Doyle M C , et al. Event-related potentials and the recollection of low and high frequency words[J]. Neuropsychologia, 1995, 33(4):471.
    [15] Kounios J , Bachman P , Casasanto D , et al. Novel concepts mediate word retrieval from human episodic associative memory: evidence from event-related potentials[J]. Neuroence Letters, 2003, 345(3):157-160.
    [16] Weyerts H , Tendolkar I , Smid H G O M , et al. ERPs to encoding and recognition in two different inter-item association tasks[J]. NeuroReport, 1997, 8(7):1583-1588.
    [17] Brown M W , Aggleton J P . Recognition memory: what are the roles of the perirhinal cortex and hippocampus?[J]. Nature Reviews Neuroence, 2001, 2(1):51-61.
    [18] Konkel. Relational memory and the hippocampus: Representations and methods. Front Neurosci. 2009; 3 :166–174.Konkel A., Cohen N. J. (2009)
    [19] Lila Davachi, Anthony D. Wagner. Hippocampal Contributions to Episodic Encoding: Insights From Relational and Item-Based Learning[J]. Journal of Neurophysiology, 2002, 88(2):982-90.
    [20] Roediger H L , Mcdermott K B . Creating false memories: Remembering words not presented in list[J]. Journal of Experimental Psychology Learning Memory & Cognition, 1995, 21(4):803-814.
    [21] Yu-Chi H , Cheng-Te W , Guo-Tzau W , et al. The Flysim project – persistent simulation and real-time visualization of fruit fly whole-brain spiking neural network model[J]. Frontiers in Neuroinformatics, 2014, 8.
    [22] Abbott, Doug. Installation - Embedded Linux Development Using Eclipse - Chapter 2[J]. Embedded Linux Development Using Eclipse, 2009:13–30.
    [23] Foley, James, Dam, Andries Van, Feiner, Steven,等. Computer Graphics in C#: Principles and Practices[M]. Addison-Wesley Publishing Company, 2008.
    [24] Magnusson,Boris. Modern Concurrency Abstractions for C#. ECOOP 2002 — Object-Oriented Programming Volume 2374|
    [25] 趙春玲. .NET平臺下開發三層架構WinForm應用程序簡介[J]. 信息技術與信息化, 2010, 000(004):33-35.
    [26] 陳輝. 基於ZigBee與GPRS的溫室番茄遠端智慧灌溉系統的研究與實現[D]. 浙江大學, 2013.
    [27] Dupper J L , Nagy P K . Application specific graphical user interface (GUI) that is window programmable and capable of operating above a windows operating system GUI[J]. 1998.
    [28] Hebb, D.O. The Organization of Behavior. New York: Wiley & Sons. 1949.
    [29] J.J.Hopfield. Neural networks and physical systems with emergent collective computational abilities[J]. Proc Natl AcadSci, 1982, 79:2554-2558.
    [30] Hopfield, J, J. Neurons with graded response have collective computational properties like those of two-state neurons.[J]. Proceedings of the National Academy of Sciences, 1984.
    [31] Hodgkin A L , Huxley A F . A quantitative description of membrane current and its application to conduction and excitation in nerve.[J]. Journal of Physiology, 1952, 117.
    [32] Fitzhugh R . Impulses And Physiological States In Theoretical Models Of Nerve Membrane[J]. Biophysical Journal, 1961, 1(6):445-466.
    [33] Nagumo J S , Arimoto S , Yoshizawa S . An Active Pulse Transmission Line Simulating Nerve Axon[J]. Proceedings of the Ire, 1962, 50(10):2061-2070.
    [34] 李冰, 彭建華, 劉延柱. 隨機延時Hodgkin-Huxley神經網絡的同步與聯想記憶[J]. 上海交通大學學報, 2005(11):188-192.
    [35] Takashi, Kanamaru, Yoichi. Associative memory retrieval induced by fluctuations in a pulsed neural network[J]. Physical Review E, 2000.
    [36] Urakubo H , Honda M , Froemke R C , et al. Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity.[J]. Journal of Neuroence the Official Journal of the Society for Neuroence, 2008, 28(13):3310.
    [37] EL Bienenstock,LN Cooper,PW Munro. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex[M]// How We Learn; How We Remember: Toward An Understanding Of Brain And Neural Systems:Selected Papers of Leon N Cooper. 1988.
    [38] T.Toyoizumi. Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission[J]. Proceedings of the National Academy of Sciences, 2005.
    [39] Brill E . Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging[J]. Computational Lingus, 1995, 21(4):543--565.
    [40] Lindner B , Longtin, André, Bulsara A . Analytic Expressions for Rate and CV of a Type I Neuron Driven by White Gaussian Noise[J]. Neural Computation, 2014, 15(8):1761-1788.

    QR CODE