簡易檢索 / 詳目顯示

研究生: 黃子晉
論文名稱: 含矽穿孔三維晶片堆疊電子構裝之散熱效能分析
On the Thermal Performance Analysis of Three-dimensional Chip Stacking Electronic Packaging with Through Silicon Vias
指導教授: 陳文華
鄭仙志
口試委員: 陳文華
鄭仙志
林見昌
劉德騏
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 含矽穿孔散熱效能
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    近年來,由於消費者對輕薄短小及高效能電子產品有很高之需求,致使電子元件構裝發展走向高密度、微型化及多元化。在傳統的構裝中,晶片間的電訊傳輸多以打線為主,但打線過長常易發生電訊延遲現象。為了減少電訊延遲以增加電性效能,三維晶片堆疊構裝技術因而產生。此技術係藉由晶片垂直堆疊方式,使構裝體達到微小化,並可將不同性質之元件(高頻無線通訊元件、記憶體、邏輯元件、感測器及影像處理之元件)等異質整合在單一構裝體中,提高電性效能。因晶片堆疊及構裝微型化之關係,構裝整體消耗功率亦相對提升,而構裝體高功率密度易造成晶片之局部高溫甚至熱集中點之現象,造成晶片內部結構破壞與電訊傳遞失效。因此,如何改善構裝之散熱效能,已經成為電子構裝產學研各界重視之研發課題。
    本論文主要是針對含矽穿孔三維晶片堆疊構裝進行散熱效能研究。首先,本論文利用有限單元分析套裝軟體ANSYSTM建立含單一矽穿孔晶片單元結構等效熱傳導係數分析模型,並進而探討矽穿孔直徑、高度、間距、二氧化矽層厚度與陣列矽穿孔數目等因子對含矽穿孔晶片等效熱傳導係數之影響。應用所建立之含矽穿孔晶片等效熱傳導係數分析模型,本論文接著以工研院所開發之內含矽穿孔晶片三維堆疊四方扁平構裝為對象,探討其在自然對流環境下之散熱效能,其中導線層則以材料混合法則建構等效熱傳導係數分析模型。數值計算所得之晶片接面溫度與紅外線熱像儀及熱瞬態測試儀之量測值相互驗證,結果頗為脗合,顯示本論文建立之含矽穿孔晶片等效熱傳導係數及含矽穿孔三維晶片堆疊構裝有限單元熱傳分析模型之準確性及適用性。
    最後,本論文藉由上述已確認之含矽穿孔三維晶片堆疊構裝有限單元熱傳分析模型分析內含多層矽穿孔三維晶片堆疊構裝之散熱效能並探討不同材料熱傳導係數、晶片厚度、基板面積、基板厚度、玻璃厚度、矽穿孔直徑、高度及二氧化矽層厚度等參數對其晶片接面溫度之影響。本論文成果將可供相關研究人員進行含矽穿孔三維晶片堆疊構裝散熱設計之參考。


    目錄 摘要 I 目錄 III 圖目錄 VII 第一章、導論 1 1.1研究動機 1 1.2文獻回顧 2 1.3 研究目標 4 第二章、含矽穿孔三維晶片堆疊構裝結構 6 2.1 含矽穿孔三維晶片堆疊QFP構裝 6 2.2含多層矽穿孔三維晶片堆疊構裝 7 第三章、含矽穿孔三維晶片堆疊構裝熱傳分析 9 3.1等效熱傳導係數計算 9 3.1.1導線層之等效熱傳導係數 9 3.1.2含矽穿孔晶片等效熱傳導係數 10 3.2散熱效能分析 11 3.2.1 熱傳分析邊界條件 11 3.2.2散熱效能評估 12 3.3三維有限單元熱傳分析模型 12 3.3.1含矽穿孔三維晶片堆疊QFP構裝熱傳分析 12 3.3.2含多層矽穿孔三維晶片堆疊構裝熱傳分析 13 第四章、實驗量測 15 4.1 紅外線熱像儀溫度量測 15 4.2熱電偶溫度量測 16 4.3溫度敏感參數曲線量測 17 4.4 T3ster熱阻量測 18 第五章、結果與討論 19 5.1含矽穿孔晶片等效熱傳導係數分析 19 5.1.1含單一矽穿孔晶片單元結構 20 5.1.2陣列式含矽穿孔晶片結構 23 5.2含矽穿孔三維晶片堆疊QFP構裝散熱效能分析 24 5.2.1三維有限單元熱傳分析 24 5.2.2不確定分析 27 5.3含多層矽穿孔三維晶片堆疊構裝散熱效能分析 28 5.3.1三維有限單元熱傳分析 28 5.3.2參數化分析 29 第六章、結論與展望 32 參考文獻 34 附表 39 附圖 43

    參考文獻
    1. Bar-Cohen, Kraus, A. D. and Davidson, S. F. (1983), “Thermal Frontiers in the Design and Packaging of Microelectronic Equipment”, Mechanical Engineering, Vol. 105, pp.53-59.
    2. Boresi, P. B. and Chong, K. P. (2000), “Elasticity in Engineering Mechanics”, John Wiley& Sons, Inc.
    3. Chen, W. H., Cheng, H. C. and Chung, I. C. (2002), “A Response Surface for Effective Thermal Characterization of Multichip-Module Package”, IMAPS Taiwan Technical Symposium,
    4. Chen, W. H., Cheng, H. C. and Shen, H. A. (2003), “An Effective Methodology for Thermal Characterization of Electronic Packaging”, IEEE Transaction on Components and Packaging Technologies, Vol. 26, pp. 222-232.
    5. Chen, W. H., Cheng, H. C. and Lin, C. H. (2004), “On the Thermal Performance Characteristics of Three-dimensional Multichip Modules”, Journal of Electronic Packaging, Vol. 126, pp.374-383.
    6. Chin, C. L., Pin, J. W. and Jong, S. K. (2007), “Are Intermetallics in Solder Joints Really Brittle”, IEEE Electronic Components and Technology Conference, pp. 648-652.
    7. Cheng, H. C., Chen, W. H. and Cheng, H. F. (2008), “Theoretical and experimental characterization of heat dissipation in a board-level microelectronic component”, Applied Thermal Engineering, Vol. 28, pp.575-588.
    8. Chen, M. W., Chen, E., Lai, J. Y. and Wang, Y. P. (2008), “Thermal Investigation for Multiple Chips 3D Packages”, IEEE Electronic Packaging Technology Conference, pp.559-564.
    9. Chien, H. C., Lau, J. H., Chao, Y. L., Tain, R. M. and Dai, M. J. (2012), “Thermal Evaluation and Analyses of 3D IC Integration SiP with TSVs for Network System Applications”, IEEE Electronic Components and Technology Conference, pp.1866 -1873.
    10. Cheng, H. C., Ciou, W. R., Chen, W. H., Kuo, J. L., Lu, H. C. and Wu, R. B. (2013), “Heat dissipation analysis and design of a board-level phased-array transmitter module for 60-GHz communication”, Applied Thermal Engineering, Vol. 53, pp.78-88.
    11. Ellison, G. N. (1989), “Thermal Computations for Electronic Equipment”, R. E. Krieger Publishing Company.
    12. EIA/JEDEC Standard. (1995), “Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device) ”, EIA/JESD51-1.
    13. EIA/JEDEC Standard. (1995), “Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air)”, EIA/JESD51-2.
    14. EIA/JEDEC Standard. (2000), “Test Boards for Area Array Surface Mount Package Thermal Measurements”, EIA/JESD51-9.
    15. EIA/JEDEC Standard. (2010), “Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction to Case of Semiconductor Devices with Heat Flow Trough a Single Path”, EIA/JESD51-14.
    16. Guo, Y. and Vijaykumar, B. (2006), “Issues and Solution for Thermal Management in Plastic Packages”, International Conference on Electronic Packaging Technology, pp.1-5.
    17. Goldsmid, H. J. (1960), “Applications of the thermoelectricity”, John Wiley & Sons.
    18. Haiying, L., Jacob, K. and Wong, C. P. (2002), “Improvement of Thermal Conductivity of Underfill Materials for Electronic Packaging”, Electronic Components and Technology Conference, pp.1548-1552.
    19. Holman, P .(1994) , “Experimental Method for Engineers”, McGraw-Hill, lnc.
    20. Incropera, F. P., Dewitt, D. P., Bergman, T. L. and Lavine, A. S. (2006), “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, Inc.
    21. Lau, J. H. and Yue, T. G. (2009), “Thermal Management of 3D IC Integration with TSV (Through Silicon Via)”, IEEE Electronic Components and Technology Conference, pp.635-640.
    22. Lau, J. H. and Yue, T. G. (2012), “Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration system-in-package(SiP)”, Microelectronics Reliability, Vol. 52,pp. 2660-2669.
    23. Military Standardization Handbook, (1979),“Reliability Prediction of Electronic Equipment”, USF, DOD.
    24. Mills, A. F. (2005), “Heat Transfer”, Pearson Education, Inc.
    25. Matsumoto, K., Ibaraki, S., Sakuma, K. and Yamada, F. (2009), “Thermal resistance measurements of interconnections for a three-dimensional (3D) chip stack”, International Conference on 3D System Integration, pp.1-5.
    26. Hsieh, M. C., Yu, C. K. and Wu, S. T. (2010),“Thermo-Mechanical Simulative Study for 3D Vertical Stacked IC Packages with Spacer Structures”, IEEE Semiconductor Thermal Measurement and Management Symposium, pp.47-54,
    27. Ridsdale G., Joiner B., Bigler J. and Torres V. M. (1996),“Thermal Simulation to Analyze Design Features of Plastic Quad Flat Packages”, Journal of Microcircuits and Electronic Packaging, Vol. 19, pp.103-109.
    28. Snyder, D. W. (1992), “Thermal analysis and modeling of a copper-polyimide thin-film-on silicon multichip module packaging technology”, Semiconductor Thermal Measurement and Management Symposium, pp.101-109.
    29. Takahashi, K., Umemoto, M., Tanaka, N., Tanida, K., Nemoto, Y., Tomita, Y., Tago, M. and Bonkohara, M. (2001), “Ultra-high-density Interconnection Technology of Three-dimensional Packaging”, Microelectronics Reliability, Vol. 43, pp.1267-1279.
    30. Weide, K., Keck, C. and Yu, X. (1998), “Influence of the Material Properties on the Thermal Behavior of a Package”, Proceedings of the SPIE Conference on Microelectronic Manufacturing Yield. Reliability, and Failure Analysis, pp.112-121.
    31. Weide, K. and Keck, C. (1999), “Influence of Different Materials on the Thermal Behavior of a CDIP-8 Ceramic Package”, Proceedings of the SPIE Conference on In-Line Methods and Monitors for Process and Yield Improvement, pp.156-163.
    32. Zahn, B. A. (1999), “Optimizing Cost and Thermal Performance: Rapid Prototyping of a High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Package”, IEEE Semiconductor Thermal Measurement and Management Symposium, pp.133-141.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE