研究生: |
陳泰瑜 Tai-Yu Chen |
---|---|
論文名稱: |
基於旅遊偏好之個人化行程推薦系統 Personalized Itinerary Recommendation System Based on Travel Preferences |
指導教授: |
蘇豐文
Von-Wun Soo |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 旅遊偏好 、個人化 、旅遊行程 、推薦系統 、偏好學習 |
外文關鍵詞: | Travel Preferences, Personalized, Itinerary, Recommendation System, Preferences Learning |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提供一套基於使用者偏好之個人化旅遊行程推薦系統,此系統能針對「行程整體性」、使用者偏好變化情形,做出合適的推薦,並以旅行社所提供之「國內旅遊」套裝行程為其應用領域。在本系統裡,我們建立一個關於「旅遊行程」領域之「使用者偏好模型」,讓不同使用者能夠表達其個人偏好,並且也考量人們在安排旅遊時,有可能拿來作為決定一筆行程之方式,提出了「依據此次旅遊偏好」或「按照過去旅遊經驗」來推薦行程之策略。在這兩策略裡,我們融入了自行設計的「旅遊行程推薦演算法」,此演算法具有考量「行程整體性」、分析推薦錯誤原因、修正推薦方向以及偏好學習之能力,根據實驗結果證明,此演算法確實能有效地減少系統所需之推薦次數,以求所推薦出的行程能達到滿足使用者偏好之目的。再者,有鑒於偏好變化對系統推薦效果的影響,我們提倡可分別針對「偏好項目權重」及「行程內容」來學習之概念。在「偏好項目權重」學習方面,應用了「支援向量機」能處理「非線性分割性質」資料,有效地求解其「分割平面模型」之特性,來更新各偏好項目之權重;而在「行程內容」學習方面,我們定義了「長期偏好」與「短期偏好」學習模型,針對各偏好項目實際內容再作更細部之學習,掌握使用者真正感興趣的行程內容為何,使系統所推薦之旅遊行程能更加地貼近使用者旅遊需求。
1. Melinda T. Gervasio , Michael D. Moffitt , Martha E.
Pollack , Joseph M. Taylor , Tomas E. Uribe , Active
Preference Learning for Personalized Calendar
Scheduling Assistance, IUI’05, January 9–12, San
Diego, California, USA, 2005.
2. Shih-jui Lin and Jane Yung-jen Hsu, Learning User’s
Scheduling Criteria in A PersonalCalendar Agent, In:
Proceedings of TAAI2000, Taipei, November 2000.
3. Jean Oh and Stephen F. Smith, Preferences in Distributed
Calendar Scheduling,School of Computer 5000 Forbes
Avenue Pittsburgh, PA 15213, USA
4. Zhiwen Yu , Daqing Zhang , Xingshe Zhou , Changde Li ,
KES2005,User Preference Learning for Multimedia
Personalization in Pervasive Computing Environment ,
September 14-16, Melbourne, Australia, 2005.
5. S. Braynov, Personalization and Customization
Technologies, The InternetEncyclopedia, John Wiley &
Sons, 2003.
6. M. Balabanovic and Y. Shoham, Combining Content-based
and Collaborative Recommendation, Communications of the
ACM, 1997.
7. Qing Li, Byeong Man Kim, An Approach for Combining
Content-based and Collaborative Filters , March
1997/Vol. 40, No. 3 Communication of the ACM.
8. Liliana Ardissono, Anna Goy, Giovanna Petrone, Marino
Segnan and Pietro Torasso INTRIGUE: Personalied
Recommendation of Tourist Attraction for Desktop and
Handset Devices, Applied Artificial Intelligence, 17(8-
9):687--714, 2003.
9. Lorcan Coyle and Pádraig Cunningham, Improving
Recommendation Ranking by Learning Personal Feature
Weights, 2004.
10.Von-Wun Soo and Shu-Hau Liang, Recommending a Trip Plan
by Negotiation with a Software Travel Agent, In Proc. of
International Workshop on Cooperative Information
Agents, AI Lecture Note Series, Springer, 2001.
11.Chao-Hsiang Cheng and Von-Wun Soo, Multi-Agent
Recommendation Systems Based on Group Preferences, In
Proc.of PRIMA2003.
12.David Haussler, Quantifying Inductive Bias: AI Learning
Algorithms and Valiant’s Learning Framework, Artificial
Intelligence , 1998.
13.Valiant, LG, A theory of the learnable, Communications
of the ACM 27(11):
1134 - 1142, 1984.
14.Christopher J.C. Burges , Bell Laboratories, Lucent
Technologies , A Tutorial on Support Vector Machines for
Pattern Recognition ,Data Mining and Knowledge
Discovery, 2, 121–167, 1998.
15.Marti Hearst, Support Vector Machines, Trends and
Controversies, IEEE Intelligent Systems Magazine vol 13,
no 4, 1998
16.N. Cristianini and J. Shawe-Taylor, An Introduction to
Support Vector Machines and other Kernel-based Learning
Methods, Cambridge University Press, to appear, January
2000.
17.Dwi H. Widyantoro, Thomas R. Ioerger, John Yen, An
Adaptive Algorithm for Learning Changes in User
Interests, Proc. of 8th ACM Intl' Conf. on Information
and Knowledge Management (CIKM '99), Kansas City
November 1999.
18.Dwi H. Widyantoro, Thomas R. Ioerger, and John Yen,
Learning User Interest Dynamics with a Three-Descriptor
Representation, Journal of the American Society for
Information Science (JASIS), Volume 52 , Issue 3, Pages:
212 – 225, 2000.
19.Dwi H. Widyantoro, Thomas R. Ioerger, John Yen: Tracking
changes in user interests with a few relevance
judgments. CIKM 2003: 548-551.
20.旅遊心理學,劉純編著,張琬菁校閱,臺北市揚智文化,2001[民
90]。
21.Weka 3: Data Mining Software in Java,
http://www.cs.waikato.ac.nz/ml/weka/.
22.John C. Platt, Fast training of support vector machines
using sequential minimal optimization, Advances in
kernel methods: support vector learning , Pages: 185 –
208 , Year of Publication: 1999.