研究生: |
謝雅如 Hsieh, Ya-Ju |
---|---|
論文名稱: |
光動力療法所引起的細胞死亡與Procaspase-3的後轉譯修飾作用 Cell death and post-translational modification of procaspase-3 induced by Photofrin-mediated Photodynamic treatment in mammalian cells |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 214 |
中文關鍵詞: | 光照療法 、內質網 、內質網鈣離子通道 、細胞死亡 、含氧活化分子 |
外文關鍵詞: | Photodynamic therapy, endoplasmic reticulum, SERCA, caspase-3, cell death, reactive oxygen species |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Photofrin® is the first generation photosensitizer for photodynamic treatment (PDT) of cancer, and Photofrin-PDT-triggered cell death represents its major therapeutic effect. Although diverse cell death phenotypes induced by Photofrin-PDT have been observed for some time, the mechanism(s) underlying this diversity remain elusive. Using human epidermoid carcinoma A431 cells as a model, we previously showed that distinct cell death types could be triggered which depend on Photofrin location and PDT dosage [Hsieh et al., (2003) J. Cell. Physiol. 194, 363-375]. In this thesis, the effects of Photofrin-PDT on A431 cells with intracellular organelle-localized Photofrin were further investigated. My study showed that PDT of A431 cells with intracellular organelle-localized Photofrin caused dilation of endoplasmic reticulum (ER), which results in the perinuclear vacuole formation. These dilated vacuoles are just proximal to the intracellular DCFDA-sensitive reactive oxygen species (ROS) elicited post Photofrin-PDT. The PDT-induced alteration of ER structure is similar to that triggered by thapsigargin, a ER Ca2+-ATPase inhibitor that perturb Ca2+ homeostasis, suggesting a role of Ca2+ in the formation of PVs. These results unravel a novel cell response to ER stress elicited by PDT when intracellular organelles are selectively loaded with Photofrin. To explore the control mechanism(s) of multiple cell death phenotypes caused by PDT treatment, the possible modification/regulation of caspase-3, a critical executioner of apoptosis, by Photofrin-PDT was further investigated. The results revealed for the first time that Photofrin-PDT can modify and inactivate procaspase-3, some of which turned into novel species with extraordinary high molecular weight (HMW) (~90 kDa) observed in SDS-PAGE. Photofrin-PDT generated ROS and blocked the activation of procaspase-3 by the upstream protease, caspase-8. Mass spectrometry-based analysis of post-translational modification of procaspase-3 using FT-MS and 16O/18O- and 14N/15N-labeling quantitative methods showed that Photofrin-PDT caused Met oxidation of procaspase-3 in this process mainly on Met-27, 39 and 44 in a Photofrin dose-dependent manner, but the active site Cys163 remained largely unmodified. Site direct mutagenesis (Met to Leu) experiments further denoted Met-44 as a critical residue for regulating procaspase-3 activation. In addition, the caspase-3-containing HMW products could be induced in various human cell lines in an oxidative stress-dependent manner, as well as in a mouse xenograft tumor model. Experiments using ectopically expressed procaspase-3 tagged with different tags indicated that the HMW products were resulted from cross-linking of procaspase-3 itself. In conclusion, this thesis have characterized different types of cell death elicited by Photofrin-PDT, in which Met oxidation and HMW product formation of procaspase-3 may play important roles in regulating caspase-3 activity and hence the cell fate determination.
Photofrin 是光動力療法中用來治療癌症的第一代光敏劑,主要的治療效果可導致癌細胞的死亡。許多研究發現PDT可以導致各種不同型態的細胞死亡,但是其中的機制還不是非常清楚。我們利用A431細胞進行PDT的研究,發現Photofrin不同處理時間,會分布在細胞不同的區域,照光處理後可以造成細胞不同的死亡型態 [Hsieh et al., (2003) J. Cell. Physiol. 194, 363-375]。在本研究中發現,當Photofrin分布在細胞內胞器中時,處理光照後2-8小時會導致細胞核周圍的空泡形成,我們證明空泡時由ER形成的,並且和ROS的形成是相關的;利用一個ER膜上的Ca2+-ATPase (SERCA) 的抑制劑處理,也可以看到相同的空泡的形成。本研究發現了一個新的細胞反應,PDT處理後會造成ER的壓力並導致空泡的形成。此外,caspase-3在細包凋亡中扮演一個執行者的角色,我們證實了PDT處理後會導致procaspase-3被修飾並且失去活性,一部分的procaspase-3還會形成三倍的高分子量產物。高劑量的PDT處理可以阻止內生性的以及重組的procaspase-3被上游的蛋白質(caspase-3)活化。利用FT-MS分析蛋白質量差異,或用16O/18O以及 15N穩定同位素標定的定量實驗中,我們發現氧化是PDT所造成的主要修飾作用。定量結果顯示,Met-27, -39 及 -44是氧化最明顯的胺基酸,而活性中心Cys163沒有明顯的變化。在procaspase-3-D3A中點突變的實驗結果顯示,M44L的突變株活性相較於其他突變株低 (M27L, M39L and M222L);在野生型中點突變的實驗結果顯示,M44L的突變株被上游caspase-8活化的情況較差;綜合以上的結果顯示高劑量PDT處理後造成Methionine氧化以致procaspase-3不易被活化,這或許可以解釋PDT造成的複雜的細胞死亡;更進一步的,我們認為高分子產物的行程也可能在細胞死亡中扮演一個角色。我們發現高分子量產物會在各種細胞形成,並且與氧化壓力相關,而高分子量的形成也可以在動物實驗中看到。高分子量產物是經由修飾已生成的蛋白質所形成,並造成原來的procaspase-3的減少,在細胞中表現myc- 以及EGFP-procaspase-3 經PDT處理後更證明了高分子量產物是procaspase-3之間彼此共價鍵結形成。但高分子量產物的鍵結不是非常穩定,在純化的過程中會再度斷裂變回單體結構,目前我們正在尋找純化的方法以及鑑定共價鍵結的位置。綜合上述結論,在PDT處理後,我們鑑定不同的細胞死亡型態;另一方面,PDT處理後造成caspase-3氧化,形成高分子量產物,並失去活性,這些caspase-3的改變可能調控了細胞死亡的路徑。
1. Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-7.
2. Dougherty, T.J., et al., Photodynamic therapy. J Natl Cancer Inst, 1998. 90(12): p. 889-905.
3. Berg, K., et al., Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc, 2005. 218(Pt 2): p. 133-47.
4. Chan, W.H., J.S. Yu, and S.D. Yang, Apoptotic signalling cascade in photosensitized human epidermal carcinoma A431 cells: involvement of singlet oxygen, c-Jun N-terminal kinase, caspase-3 and p21-activated kinase 2. Biochem J, 2000. 351(Pt 1): p. 221-32.
5. Halliwell, B., Gutteridge, J.M.C., ed. Free Radicals in Biology and Medicine. 1989, Oxford University Press: New York. 936 p.
6. Levy, J.G., Photodynamic therapy. Trends Biotechnol, 1995. 13(1): p. 14-8.
7. Dellinger, M., Apoptosis or necrosis following Photofrin photosensitization: influence of the incubation protocol. Photochem Photobiol, 1996. 64(1): p. 182-7.
8. Henderson, B.W. and T.J. Dougherty, How does photodynamic therapy work? Photochem Photobiol, 1992. 55(1): p. 145-57.
9. Girotti, A., ed. Photosensitized lipid peroxidation in biological membranes. Photodynamic therapy of neoplastic disease. , ed. K. D. Vol. 1. 1990, CRC: Florida. p 229-245.
10. Sakharov, D.V., et al., Prolonged lipid oxidation after photodynamic treatment. Study with oxidation-sensitive probe C11-BODIPY581/591. FEBS Lett, 2005. 579(5): p. 1255-60.
11. Woods, J.A., et al., The effect of photofrin on DNA strand breaks and base oxidation in HaCaT keratinocytes: a comet assay study. Photochem Photobiol, 2004. 79(1): p. 105-13.
12. Gomer, C.J. and N.J. Razum, Acute skin response in albino mice following porphyrin photosensitization under oxic and anoxic conditions. Photochem Photobiol, 1984. 40(4): p. 435-9.
13. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535-45.
14. Green, D.R. and J.C. Reed, Mitochondria and apoptosis. Science, 1998. 281(5381): p. 1309-12.
15. He, X.Y., et al., Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell lines. Photochem Photobiol, 1994. 59(4): p. 468-73.
16. Kessel, D., M.G. Vicente, and J.J. Reiners, Jr., Initiation of apoptosis and autophagy by photodynamic therapy. Autophagy, 2006. 2(4): p. 289-90.
17. Marchal, S., et al., Necrotic and apoptotic features of cell death in response to Foscan photosensitization of HT29 monolayer and multicell spheroids. Biochem Pharmacol, 2005. 69(8): p. 1167-76.
18. Oleinick, N.L., R.L. Morris, and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci, 2002. 1(1): p. 1-21.
19. Buettner, G.R., E.E. Kelley, and C.P. Burns, Membrane lipid free radicals produced from L1210 murine leukemia cells by photofrin photosensitization: an electron paramagnetic resonance spin trapping study. Cancer Res, 1993. 53(16): p. 3670-3.
20. Gibson, S.L., R.S. Murant, and R. Hilf, Photosensitizing effects of hematoporphyrin derivative and photofrin II on the plasma membrane enzymes 5'-nucleotidase, Na+K+-ATPase, and Mg2+-ATPase in R3230AC mammary adenocarcinomas. Cancer Res, 1988. 48(12): p. 3360-6.
21. Thomas, J.P. and A.W. Girotti, Role of lipid peroxidation in hematoporphyrin derivative-sensitized photokilling of tumor cells: protective effects of glutathione peroxidase. Cancer Res, 1989. 49(7): p. 1682-6.
22. Murant, R.S., S.L. Gibson, and R. Hilf, Photosensitizing effects of Photofrin II on the site-selected mitochondrial enzymes adenylate kinase and monoamine oxidase. Cancer Res, 1987. 47(16): p. 4323-8.
23. Roberts, W.G., L.H. Liaw, and M.W. Berns, In vitro photosensitization II. An electron microscopy study of cellular destruction with mono-L-aspartyl chlorin e6 and photofrin II. Lasers Surg Med, 1989. 9(2): p. 102-8.
24. Salet, C., Hematoporphyrin and hematoporphyrin-derivative photosensitization of mitochondria. Biochimie, 1986. 68(6): p. 865-8.
25. Agarwal, M.L., et al., Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res, 1991. 51(21): p. 5993-6.
26. Hsieh, Y.J., et al., Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol, 2003. 194(3): p. 363-75.
27. Kessel, D. and Y. Luo, Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B, 1998. 42(2): p. 89-95.
28. Kessel, D., et al., The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol, 1997. 65(3): p. 422-6.
29. Luo, Y. and D. Kessel, Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol, 1997. 66(4): p. 479-83.
30. Noodt, B.B., et al., Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX. Br J Cancer, 1996. 74(1): p. 22-9.
31. Noodt, B.B., et al., Different apoptotic pathways are induced from various intracellular sites by tetraphenylporphyrins and light. Br J Cancer, 1999. 79(1): p. 72-81.
32. Peng, Q., J. Moan, and J.M. Nesland, Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol, 1996. 20(2): p. 109-129.
33. Wyld, L., M.W. Reed, and N.J. Brown, Differential cell death response to photodynamic therapy is dependent on dose and cell type. Br J Cancer, 2001. 84(10): p. 1384-6.
34. Moor, A.C., Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B, 2000. 57(1): p. 1-13.
35. Buytaert, E., M. Dewaele, and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta, 2007. 1776(1): p. 86-107.
36. Truscott, M., et al., Carboxyl-terminal proteolytic processing of CUX1 by a caspase enables transcriptional activation in proliferating cells. J Biol Chem, 2007. 282(41): p. 30216-26.
37. MacFarlane, M. and A.C. Williams, Apoptosis and disease: a life or death decision. EMBO Rep, 2004. 5(7): p. 674-8.
38. Steller, H., Mechanisms and genes of cellular suicide. Science, 1995. 267(5203): p. 1445-9.
39. Suzuki, Y., Y. Nakabayashi, and R. Takahashi, Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8662-7.
40. Hengartner, M.O. and H.R. Horvitz, C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell, 1994. 76(4): p. 665-76.
41. Thornberry, N.A. and Y. Lazebnik, Caspases: enemies within. Science, 1998. 281(5381): p. 1312-6.
42. Yuan, J., et al., The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 1993. 75(4): p. 641-52.
43. Fuentes-Prior, P. and G.S. Salvesen, The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J, 2004. 384(Pt 2): p. 201-32.
44. Nicholson, D.W., Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ, 1999. 6(11): p. 1028-42.
45. Degterev, A., M. Boyce, and J. Yuan, A decade of caspases. Oncogene, 2003. 22(53): p. 8543-67.
46. Boatright, K.M. and G.S. Salvesen, Mechanisms of caspase activation. Curr Opin Cell Biol, 2003. 15(6): p. 725-31.
47. Mannick, J.B., et al., Fas-induced caspase denitrosylation. Science, 1999. 284(5414): p. 651-4.
48. Mannick, J.B., et al., S-Nitrosylation of mitochondrial caspases. J Cell Biol, 2001. 154(6): p. 1111-6.
49. Rossig, L., et al., Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem, 1999. 274(11): p. 6823-6.
50. Li, J., et al., Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun, 1997. 240(2): p. 419-24.
51. Mohr, S., et al., Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun, 1997. 238(2): p. 387-91.
52. Zech, B., et al., Mass spectrometric analysis of nitric oxide-modified caspase-3. J Biol Chem, 1999. 274(30): p. 20931-6.
53. Huang, Z., et al., Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol, 2008. 75(11): p. 2234-44.
54. Alvarado-Kristensson, M., et al., p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med, 2004. 199(4): p. 449-58.
55. Tannenbaum, S.R. and J.E. Kim, Controlled S-nitrosation. Nat Chem Biol, 2005. 1(3): p. 126-7.
56. Choi, Y.E., et al., The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem, 2009. 284(19): p. 12772-82.
57. Xue, L.Y., S.M. Chiu, and N.L. Oleinick, Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res, 2001. 263(1): p. 145-55.
58. Xue, L.Y., S.M. Chiu, and N.L. Oleinick, Staurosporine-induced death of MCF-7 human breast cancer cells: a distinction between caspase-3-dependent steps of apoptosis and the critical lethal lesions. Exp Cell Res, 2003. 283(2): p. 135-45.
59. Mikes, J., et al., Necrosis predominates in the cell death of human colon adenocarcinoma HT-29 cells treated under variable conditions of photodynamic therapy with hypericin. Photochem Photobiol Sci, 2007. 6(7): p. 758-66.
60. Furre, I.E., et al., Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells. Apoptosis, 2006. 11(11): p. 2031-42.
61. Whitacre, C.M., et al., Photodynamic therapy of human breast cancer xenografts lacking caspase-3. Cancer Lett, 2002. 179(1): p. 43-9.
62. Ogata, M., et al., Ca(2+)-dependent and caspase-3-independent apoptosis caused by damage in Golgi apparatus due to 2,4,5,7-tetrabromorhodamine 123 bromide-induced photodynamic effects. Photochem Photobiol, 2003. 78(3): p. 241-7.
63. Chen, Y., et al., Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics. Cancer Sci, 2008. 99(10): p. 2019-27.
64. Yamaguchi, H. and H.G. Wang, Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol, 2006. 26(2): p. 569-79.
65. Baba, S.P., D.K. Patel, and B. Bano, Modification of sheep plasma kininogen by free radicals. Free Radic Res, 2004. 38(4): p. 393-403.
66. Shen, H.R., et al., Photodynamic crosslinking of proteins. II. Photocrosslinking of a model protein-ribonuclease A. J Photochem Photobiol B, 1996. 35(3): p. 213-9.
67. Lledias, F. and W. Hansberg, Oxidation of human catalase by singlet oxygen in myeloid leukemia cells. Photochem Photobiol, 1999. 70(6): p. 887-92.
68. Liu, W., A.R. Oseroff, and H. Baumann, Photodynamic therapy causes cross-linking of signal transducer and activator of transcription proteins and attenuation of interleukin-6 cytokine responsiveness in epithelial cells. Cancer Res, 2004. 64(18): p. 6579-87.
69. Henderson, B.W., et al., Cross-linking of signal transducer and activator of transcription 3--a molecular marker for the photodynamic reaction in cells and tumors. Clin Cancer Res, 2007. 13(11): p. 3156-63.
70. Kim, S.Y., J.K. Tak, and J.W. Park, Inactivation of NADP(+)-dependent isocitrate dehydrogenase by singlet oxygen derived from photoactivated rose bengal. Biochimie, 2004. 86(8): p. 501-7.
71. Lee, S.M., T.L. Huh, and J.W. Park, Inactivation of NADP(+)-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie, 2001. 83(11-12): p. 1057-65.
72. Lledias, F., P. Rangel, and W. Hansberg, Oxidation of catalase by singlet oxygen. J Biol Chem, 1998. 273(17): p. 10630-7.
73. Miki, T., L. Yu, and C.A. Yu, Hematoporphyrin-promoted photoinactivation of mitochondrial ubiquinol-cytochrome c reductase: selective destruction of the histidine ligands of the iron-sulfur cluster and protective effect of ubiquinone. Biochemistry, 1991. 30(1): p. 230-8.
74. Nagaoka, Y., et al., Specific inactivation of cysteine protease-type cathepsin by singlet oxygen generated from naphthalene endoperoxides. Biochem Biophys Res Commun, 2005. 331(1): p. 215-23.
75. Suto, D., et al., Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J, 2005. 392(Pt 2): p. 399-406.
76. Spickett, C.M., et al., Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta, 2006. 1764(12): p. 1823-41.
77. Nakamura, T. and Y. Oda, Mass spectrometry-based quantitative proteomics. Biotechnol Genet Eng Rev, 2007. 24: p. 147-63.
78. Siuti, N. and N.L. Kelleher, Decoding protein modifications using top-down mass spectrometry. Nat Methods, 2007. 4(10): p. 817-21.
79. Witze, E.S., et al., Mapping protein post-translational modifications with mass spectrometry. Nat Methods, 2007. 4(10): p. 798-806.
80. Chen, C.H., Review of a current role of mass spectrometry for proteome research. Anal Chim Acta, 2008. 624(1): p. 16-36.
81. Hoffman, M.D., M.J. Sniatynski, and J. Kast, Current approaches for global post-translational modification discovery and mass spectrometric analysis. Anal Chim Acta, 2008. 627(1): p. 50-61.
82. Steen, H., et al., Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem, 2002. 277(2): p. 1031-9.
83. Steen, H., et al., Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA. Protein Sci, 2001. 10(10): p. 1989-2001.
84. Fenselau, C. and X. Yao, 18O2-labeling in quantitative proteomic strategies: a status report. J Proteome Res, 2009. 8(5): p. 2140-3.
85. Schnolzer, M., P. Jedrzejewski, and W.D. Lehmann, Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis, 1996. 17(5): p. 945-53.
86. Yao, X., et al., Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem, 2001. 73(13): p. 2836-42.
87. Rao, K.C., R.T. Carruth, and M. Miyagi, Proteolytic 18O labeling by peptidyl-Lys metalloendopeptidase for comparative proteomics. J Proteome Res, 2005. 4(2): p. 507-14.
88. Wu, C.C., et al., Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics, 2005. 5(12): p. 3173-82.
89. Hsu, R.M., et al., Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell, 2010. 21(2): p. 287-301.
90. Chi, L.M., et al., Enhanced interferon signaling pathway in oral cancer revealed by quantitative proteome analysis of microdissected specimens using 16O/18O labeling and integrated two-dimensional LC-ESI-MALDI tandem MS. Mol Cell Proteomics, 2009. 8(7): p. 1453-74.
91. Hollemeyer, K., E. Heinzle, and A. Tholey, Identification of oxidized methionine residues in peptides containing two methionine residues by derivatization and matrix-assisted laser desorption/ionization mass spectrometry. Proteomics, 2002. 2(11): p. 1524-31.
92. Qian, W.J., et al., Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using 16O/18O labeling and the accurate mass and time tag approach. Mol Cell Proteomics, 2005. 4(5): p. 700-9.
93. Patwardhan, A.J., et al., Quantitative proteome analysis of breast cancer cell lines using 18O-labeling and an accurate mass and time tag strategy. Proteomics, 2006. 6(9): p. 2903-15.
94. Zang, L., et al., Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling. J Proteome Res, 2004. 3(3): p. 604-12.
95. Schulze, W.X. and M. Mann, A novel proteomic screen for peptide-protein interactions. J Biol Chem, 2004. 279(11): p. 10756-64.
96. Shao, B., et al., Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc Natl Acad Sci U S A, 2008. 105(34): p. 12224-9.
97. Tsai, I.C., et al., Anti-phosphopeptide antibody, P-STM as a novel tool for detecting mitotic phosphoproteins: identification of lamins A and C as two major targets. J Cell Biochem, 2005. 94(5): p. 967-81.
98. Moan, J. and K. Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol, 1991. 53(4): p. 549-53.
99. LeBel, C.P., H. Ischiropoulos, and S.C. Bondy, Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol, 1992. 5(2): p. 227-31.
100. Du, Y., S. Ferro-Novick, and P. Novick, Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci, 2004. 117(Pt 14): p. 2871-8.
101. Vedrenne, C. and H.P. Hauri, Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic, 2006. 7(6): p. 639-46.
102. Denmeade, S.R. and J.T. Isaacs, The SERCA pump as a therapeutic target: making a "smart bomb" for prostate cancer. Cancer Biol Ther, 2005. 4(1): p. 14-22.
103. Sharonov, G.V., et al., Cycloimide bacteriochlorin p derivatives: photodynamic properties and cellular and tissue distribution. Free Radic Biol Med, 2006. 40(3): p. 407-19.
104. Budihardjo, I., et al., Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 1999. 15: p. 269-90.
105. Wright, A., et al., Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem Photobiol, 2002. 76(1): p. 35-46.
106. Stennicke, H.R. and G.S. Salvesen, Caspases: preparation and characterization. Methods, 1999. 17(4): p. 313-9.
107. Denault, J.B. and G.S. Salvesen, Expression, purification, and characterization of caspases. Curr Protoc Protein Sci, 2003. Chapter 21: p. Unit 21 13.
108. Stennicke, H.R., et al., Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem, 1998. 273(42): p. 27084-90.
109. Bose, K., et al., An uncleavable procaspase-3 mutant has a lower catalytic efficiency but an active site similar to that of mature caspase-3. Biochemistry, 2003. 42(42): p. 12298-310.
110. Roy, S., et al., Maintenance of caspase-3 proenzyme dormancy by an intrinsic "safety catch" regulatory tripeptide. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6132-7.
111. Penning, L.C., et al., The role of DNA damage and inhibition of poly(ADP-ribosyl)ation in loss of clonogenicity of murine L929 fibroblasts, caused by photodynamically induced oxidative stress. Cancer Res, 1994. 54(21): p. 5561-7.
112. Lee, C.P., B.L. Seong, and U.L. RajBhandary, Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J Biol Chem, 1991. 266(27): p. 18012-7.
113. Chen, C.S.a.P., R., Structure and conformation of amino acids containing sulfur. V. N-Formyl-L-methionine. Acta Cryst., 1977. B33: p. 3332-3336.
114. Creasy, D.M. and J.S. Cottrell, Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics, 2002. 2(10): p. 1426-34.
115. Froelich, J.M. and G.E. Reid, The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis. Proteomics, 2008. 8(7): p. 1334-45.
116. Janicke, R.U., et al., Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem, 1998. 273(16): p. 9357-60.
117. Han, Z., et al., A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem, 1997. 272(20): p. 13432-6.
118. Devarajan, E., et al., Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene, 2002. 21(57): p. 8843-51.
119. Danial, N.N. and S.J. Korsmeyer, Cell death: critical control points. Cell, 2004. 116(2): p. 205-19.
120. Demaurex, N. and C. Distelhorst, Cell biology. Apoptosis--the calcium connection. Science, 2003. 300(5616): p. 65-7.
121. Orrenius, S., B. Zhivotovsky, and P. Nicotera, Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol, 2003. 4(7): p. 552-65.
122. Buytaert, E., et al., Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J, 2006. 20(6): p. 756-8.
123. Granville, D.J., et al., Bcl-2 increases emptying of endoplasmic reticulum Ca2+ stores during photodynamic therapy-induced apoptosis. Cell Calcium, 2001. 30(5): p. 343-50.
124. Guo, B., et al., Potent killing of paclitaxel- and doxorubicin-resistant breast cancer cells by calphostin C accompanied by cytoplasmic vacuolization. Breast Cancer Res Treat, 2003. 82(2): p. 125-41.
125. Kaul, A. and W.A. Maltese, Killing of cancer cells by the photoactivatable protein kinase C inhibitor, calphostin C, involves induction of endoplasmic reticulum stress. Neoplasia, 2009. 11(9): p. 823-34.
126. Chiarini, A., et al., Photoexcited calphostin C selectively destroys nuclear lamin B1 in neoplastic human and rat cells - a novel mechanism of action of a photodynamic tumor therapy agent. Biochim Biophys Acta, 2008. 1783(9): p. 1642-53.
127. Zhu, D.M., et al., Calphostin C triggers calcium-dependent apoptosis in human acute lymphoblastic leukemia cells. Clin Cancer Res, 1998. 4(12): p. 2967-76.
128. Fabbri, M., S. Bannykh, and W.E. Balch, Export of protein from the endoplasmic reticulum is regulated by a diacylglycerol/phorbol ester binding protein. J Biol Chem, 1994. 269(43): p. 26848-57.
129. Mimnaugh, E.G., et al., Endoplasmic reticulum vacuolization and valosin-containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol Cancer Res, 2006. 4(9): p. 667-81.
130. Szokalska, A., et al., Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res, 2009. 69(10): p. 4235-43.
131. Xiang, J., D.T. Chao, and S.J. Korsmeyer, BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14559-63.
132. Hirsch, T., et al., The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene, 1997. 15(13): p. 1573-81.
133. Vercammen, D., et al., Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med, 1998. 187(9): p. 1477-85.
134. Korbelik, M., Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg, 1996. 14(5): p. 329-34.
135. Korbelik, M. and G.J. Dougherty, Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res, 1999. 59(8): p. 1941-6.
136. Berlett, B.S. and E.R. Stadtman, Protein oxidation in aging, disease, and oxidative stress. J Biol Chem, 1997. 272(33): p. 20313-6.
137. Stadtman, E.R. and R.L. Levine, Protein oxidation. Ann N Y Acad Sci, 2000. 899: p. 191-208.
138. Stadtman, E.R., Protein oxidation and aging. Free Radic Res, 2006. 40(12): p. 1250-8.
139. Petropoulos, I. and B. Friguet, Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res, 2006. 40(12): p. 1269-76.
140. Stadtman, E.R., et al., Methionine oxidation and aging. Biochim Biophys Acta, 2005. 1703(2): p. 135-40.
141. Squier, T.C., Oxidative stress and protein aggregation during biological aging. Exp Gerontol, 2001. 36(9): p. 1539-50.
142. Gao, J., et al., Loss of conformational stability in calmodulin upon methionine oxidation. Biophys J, 1998. 74(3): p. 1115-34.
143. Yamniuk, A.P., et al., Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin. Biophys J, 2009. 96(4): p. 1495-507.
144. Glaser, C.B., et al., Methionine oxidation, alpha-synuclein and Parkinson's disease. Biochim Biophys Acta, 2005. 1703(2): p. 157-69.
145. Schoneich, C., Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochim Biophys Acta, 2005. 1703(2): p. 111-9.
146. Palmblad, M., A. Westlind-Danielsson, and J. Bergquist, Oxidation of methionine 35 attenuates formation of amyloid beta -peptide 1-40 oligomers. J Biol Chem, 2002. 277(22): p. 19506-10.
147. Butterfield, D.A. and J. Kanski, Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42. Peptides, 2002. 23(7): p. 1299-309.
148. Porter, A.G., Flipping the safety catch of procaspase-3. Nat Chem Biol, 2006. 2(10): p. 509-10.
149. Meergans, T., et al., The short prodomain influences caspase-3 activation in HeLa cells. Biochem J, 2000. 349(Pt 1): p. 135-40.
150. Pop, C., et al., Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. Biochemistry, 2001. 40(47): p. 14224-35.
151. Feeney, B. and A.C. Clark, Reassembly of active caspase-3 is facilitated by the propeptide. J Biol Chem, 2005. 280(48): p. 39772-85.
152. Riedl, S.J., et al., Structural basis for the inhibition of caspase-3 by XIAP. Cell, 2001. 104(5): p. 791-800.
153. Feeney, B., et al., Role of loop bundle hydrogen bonds in the maturation and activity of (Pro)caspase-3. Biochemistry, 2006. 45(44): p. 13249-63.
154. Yan, P., et al., Fluorophore-assisted light inactivation of calmodulin involves singlet-oxygen mediated cross-linking and methionine oxidation. Biochemistry, 2006. 45(15): p. 4736-48.
155. Grebenova, D., et al., Protein changes in HL60 leukemia cells associated with 5-aminolevulinic acid-based photodynamic therapy. Early effects on endoplasmic reticulum chaperones. Photochem Photobiol, 2000. 72(1): p. 16-22.
156. Magi, B., et al., Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: a cell biochemical and proteomic investigation. Cell Death Differ, 2004. 11(8): p. 842-52.
157. Lu, Y., et al., Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell. J Cell Biochem, 2008. 105(6): p. 1451-60.
158. Porn-Ares, M.I., et al., Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells. Biochem J, 2003. 374(Pt 2): p. 403-11.
159. Cain, K., et al., Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J Biol Chem, 1999. 274(32): p. 22686-92.