簡易檢索 / 詳目顯示

研究生: 湯宗霖
Tang, Tsung-Lin
論文名稱: 具高運動穩定性與大驅動力之電磁式微掃描面鏡設計與實現
Design and Implementation of Electromagnetic Micro Scanning Mirrors with High Motion Stability and Large Driving Force
指導教授: 方維倫
Fang, Weileun
口試委員: 林敏雄
范龍生
楊耀州
邱一
林弘毅
方維倫
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 145
中文關鍵詞: 微掃描面鏡靜磁力勞侖茲力雙面電鍍技術內嵌磁性材料複合電磁致動力
外文關鍵詞: micro scanning mirror, magnetostatic force, Lorentz force, double-side electroplating technique, embedded magnetic material, compound electromagnetic actuating force
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先針對微掃描面鏡之應用需求進行介紹,由微掃描面鏡之系統端切入瞭解其特色,並以光學考量為設計基礎,延伸到微掃描面鏡之結構設計,進而提出雙面電鍍、內嵌磁性材料、複合電磁致動力之微掃描面鏡設計。針對雙面電鍍之微掃描面鏡設計,具有兩大特色:(1)定義磁性材料為細長圖形以增加本身的磁化強度,(2)在元件層背面以選擇性電鍍的方式增加磁性材料的體積。針對內嵌磁性材料之微掃描面鏡設計,主要具有三個特色:(1)製作矽鎳致動外環以提供大致動力與優越的機械材料特性,(2)內嵌鎳結構可增加磁性材料體積與磁化強度以提升靜磁致動力矩,(3)出平面軸對稱之矽鎳複合結構可減少鏡面操作時不必要的擺盪問題,以增加元件運動穩定性。針對複合電磁致動力之微掃描面鏡設計,具有兩大特色:(1)整合勞侖茲力與靜磁力以實現複合電磁致動力驅動微掃描面鏡,(2)採用三維磁鐵陣列以得到高強度之集中磁場。為了實現本論文所提出之微掃描面鏡設計,因此開發雙面電鍍製程技術與內嵌磁性材料製程技術,雙面電鍍製程技術具有兩個特色:(1) SOI晶片的基板層可當作遮蔽擋罩來定義元件層背面的電鍍起始層圖形,(2) SOI晶片的元件層可當作電鍍時的陰極板,以實現雙面選擇性電鍍的概念。而內嵌磁性材料製程技術則是利用單晶矽模子同時電鍍並定義厚結構鎳,以成功製作矽鎳複合致動外環。量測結果中除了成功驗證此本論文所提出之元件設計外,還可以分別以Lissajous掃描與循序掃描方式投影出二維影像,並配合上雷射訊號編碼進行系統驗證,成功證明本論文之元件特性足以提供雷射投影顯示系統之應用需求。


    This thesis introduces the applied requirements of the micro scanning mirror firstly. The mechanical designs of the micro scanning mirror based on optical considerations are proposed, including double-side electroplating design, embedded magnetic material design and compound electromagnetic actuating force design. The double-side electroplating design has two merits: (1) the ferromagnetic material is patterned to slender shape to increase the magnetization strength, (2) the backside selective electroplating of the ferromagnetic film increases the volume of the ferromagnetic materials. The embedded magnetic material design has three merits, (1) the Si-Ni compound actuating frame provides superior mechanical properties and large magnetostatic force, (2) the embedded Ni structures not only increase the ferromagnetic material volume but also enhance magnetization strength to enlarge magnetostatic torque, (3) the axial symmetric Si-Ni compound structures can increase the motion stability. The compound electromagnetic actuating force design has two merits: (1) integrate Lorentz force and magnetostatic force to realize the compound actuation, (2) employ the 3D magnet array to get the large concentrated magnetic field. In order to implement the proposed design, the fabrication techniques of double-side electroplating technique and embedded magnetic material are developed. The double-side electroplating technique has two merits: (1) the handle-layer is exploited as the shadow mask to pattern the seed-layer at the backside of the device layer, (2) the device layer acts as the cathode to enable simultaneous double-side electroplating. The embedded magnetic material technique employs a Si mold to simultaneously electroplate and pattern thick Ni to fabricate Si-Ni compound structures. The measurement results successfully demonstrate the proposed designs. In applications, the micro scanning mirrors are used to project 2D Lissajous patterns and raster scan patterns. Moreover, the micro scanning mirrors are operated with pulse laser to verify the system integration. The test results show the device characteristics are sufficient to satisfy the basic requirements of laser scanning display systems.

    摘要 II Abstract III 致謝 IV 目錄 VI 圖目錄 VIII 表目錄 XII 第1章 序論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機 7 1-4 全文架構 8 第2章 微掃描面鏡之設計考量 19 2-1 掃描軌跡 19 2-1.1 Lissajous掃描 19 2-1.2 循序掃描 20 2-1.3 掃描機制比較 22 2-2 影像解析度 22 2-3 雷射脈衝時間與時脈頻率 24 2-4 鏡面動態變形 26 2-5 結構動態分析 27 2-6 結構破壞應力 30 2-7 小結 30 第3章 雙面電鍍之微掃描面鏡設計 45 3-1 前言 45 3-2 元件設計 46 3-2.1 靜磁力致動原理 46 3-2.2 高長寬比之磁性材料圖形 47 3-2.3 選擇性雙面電鍍製程技術 48 3-3 製作流程與結果 49 3-4 量測與討論 50 3-5 小結 51 第4章 內嵌磁性材料之微掃描面鏡設計 64 4-1 前言 64 4-2 元件設計 65 4-2.1 致動外環擺盪現象之理論推導 66 4-2.2 內嵌鎳結構製程技術 68 4-2.3 熱應力分析 69 4-3 製作流程與結果 70 4-4 量測與討論 71 4-5 小結 73 第5章 複合電磁致動力之微掃描面鏡設計 86 5-1 前言 86 5-2 元件設計 87 5-2.1 勞侖茲力致動原理 87 5-2.2 複合電磁致動力設計 88 5-2.3 三維磁鐵陣列設計 89 5-3 製作流程與結果 90 5-4 量測與討論 91 5-5 小結 94 第6章 結論與未來工作 112 6-1 結論 112 6-2 未來工作 114 參考文獻 123 附錄A_符號對照表 133 附錄B_雷射投影系統之驗證 136 論文著作 143

    [1] http://www.hp.com/, Hewlett-Packard
    [2] http://www.analog.com/index.html, Analog Devices
    [3] http://www.dlp.com, Texas Instruments
    [4] http://www.knowles.com/search/, Knowles
    [5] V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, Ronald Ryf, David T. Neilson, J. Kim, C. Randy Giles, D. Bishop, “Beam-Steering Micromirrors for Large Optical Cross-Connects,” Journal of Lightwave Technology, vol. 21, pp. 634-642, 2003.
    [6] P. B. Chu, S.-S. Lee, and S. Park, “MEMS: the path to large optical crossconnects,” Communications Magazine, vol. 40, pp. 80-87, 2002.
    [7] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” Journal of Micromechanics and Microengineering, vol. 15, pp. 786-794, 2006.
    [8] C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photonics Technology Letters, vol. 11, pp. 233-235, 1999.
    [9] H. Kim, K.-D. Jung, and W. Kim, ”A wafer-level micro mechanical global shutter for a micro camera,” IEEE MEMS International Conference, Sorrento, Italy, January, 2009, pp. 156-159.
    [10] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceeding of the IEEE, vol. 86, pp.1687-1704, 1998.
    [11] H.-W. Tung, S.-Y. Lee, W.-C. Chen, and W. Fang, “A novel solid state tunable micro lens,” IEEE MEMS International Conference, Hyoko, Japan, January, 2007, pp. 747-750.
    [12] M. Tormen, Y.-A. Peter, P. Niedermann, A. Hoogerwerf, and R. Stanley, “Deformable MEMS grating for wide tunability and high operating speed,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S337-S340, 2006.
    [13] R. S. Muller and K. Y. Lau, “Surface-micromachined microoptical elements and systems,” Proceedings of the IEEE, vol. 86, pp. 1705-1720, 1998.
    [14] W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in Proc. SPIE- MOEMS and Miniaturized Systems VI, vol. 6466, San Jose, CA, January, 2007, pp. 64660D.
    [15] A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sensors and Actuators A, vol. 135, pp. 236-243, 2007.
    [16] H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto, “A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope,” Journal of Microelectromechanical Systems, vol. 12, pp. 243-251, 2003.
    [17] C. Chong, K. Isamoto, and H. Toshiyoshi, “Optically modulated MEMS scanning endoscope,” Photonics Technology Letters, vol. 18, pp. 133-135, 2006.
    [18] W. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. Chen, D. T. McCormick, N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 806-810, 2005.
    [19] J. P. Siepmann and A. Rybaltowski, “Integrable ultra-compact, high-resolution, real-time MEMS LADAR for the individual soldier,” IEEE Military Communications Conference, vol. 5, Atlantic City, NJ, October, 2005, pp. 3073-3079.
    [20] K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development, vol. 24, pp. 631-637, 1980.
    [21] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC-processed electrostatic micromotors,” IEEE Int. Electron Devices Meeting, San Francisco, CA, December, 1988, pp. 666–669.
    [22] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators A, vol. 20, pp. 25-32, 1989.
    [23] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined threedimensional micro-optics for integrated free-space optical system,” IEEE Photonics Technology Letters, vol. 6, pp. 1445-1447, 1994.
    [24] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monlithic free-space optical disk pickup heads by surface micromachining,” Optical Letters, vol. 21, pp. 155-157, 1996.
    [25] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Surface-micromachined micro-XYZ stages for free-space microoptical bench,” IEEE Photonics Technology Letters, vol. 9, pp. 345-347, 1997.
    [26] K. S. J. Pister, “Hinged polysilicon structures with integrated CMOS TFTs,” Technical Digest of the 1992 Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, June, 1992, pp. 136-139.
    [27] L. Fan, and M. C. Wu, “Self-assembled micro-XYZ stages for optical scanning and alignment,” the 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Francisco, CA, November, 1997, pp. 266-267.
    [28] L. Fan and M. C. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” Digest of 1998 IEEE/LEOS Summer Topical Meeting, Monterey, CA, July 1998, pp. II/107-108.
    [29] V. A. Aksyuk, F. Pardo, C. A. Bolle, C. R. Giles, and D. J. Bishop, “Lucent MicrostarTM micromirror array technology for large optical crossconnects,” Proceedings of SPIE, Santa Clara, CA, September 2000, vol. 4178, pp. 320-324.
    [30] V.A. Aksyuk, F. Pardo, and D.J. Bishop, “Stress-induced curvature engineering in surface-micromachined devices,” in Proc. SPIE- Design, Test, and Microfabrication of MEMS and MOEMS, Paris, France, March, 1999, vol. 3680, pp. 984-993.
    [31] V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, Ronald Ryf, David T. Neilson, J. Kim, C. Randy Giles, D. Bishop, “Beam-steering micromirrors for large optical cross-connects,” Journal of Lightwave Technology, vol. 21, pp. 634-642, 2003
    [32] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “On the expandability of free-space micromachined optical cross connects,” Journal of Lightwave Technology, vol. 18, pp. 482-489, 2000.
    [33] R. Conant, J. Nee, K. Lau, R. Muller, “Dynamic deformation of scanning micromirrors,” IEEE/LEOS Inernational Conference on Optical MEMS, Kauai, Hawaii, August 2000, pp. 49-50.
    [34] M. Hart, R.A. Conant, K.-Y. Lau, and R.S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” Journal of Microelectromechanical Systems, vol. 9, pp. 409-418, 2000.
    [35] V. Milanović, “Multilevel-beam SOI-MEMS fabrication and applications,” Journal of Microelectromechanical Systems, vol. 13, pp. 19-30, 2004.
    [36] V. Milanović, M. Last, and K.S.J. Pister, “Torsional micromirrors with lateral actuators,” Transducers ’01, Munich, Germany, June, 2001, pp.1298-1301.
    [37] T. J. Brosnihan, S. A. Brown, A. Brogan, C. S. Gormley, D. J. Collins, S. J. Sherman, M. Lemkin, N. A. Polce, and M. S. Davis, “Optical IMEMS® – a fabrication process for MEMS optical switches with integrated on-chip electronics,” Transducers’03, Boston, MA, June, 2003, pp.1638-1642.
    [38] M. Wu and W. Fang, “Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes,” Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp.535-542, 2005.
    [39] M. Wu and W. Fang, “A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp.260-265, 2006.
    [40] M. Wu, H. Y. Lin and W. Fang, “A poly-Si-based vertical comb-drive two-axis gimbaled scanner for optical applications,” IEEE Photonics Technology Letters, vol. 18, pp. 2111-2113, 2006.
    [41] N. Asada, H. Matsuki, K. Minami and M. Essashi, “Silicon micromachined two-dimensional alvano optical scanner, ” IEEE Transactions on Magnetics, vol. 30, pp. 4647–4649, 1994.
    [42] L. O. S. Ferreira and S. Moehlecke, “A silicon micromechanical galvanometric scanner,” Sensors and Actuators A, vol. 73, pp. 252–260, 1999.
    [43] S. H. Ahn and Y. K. Kim, “Silicon scanning mirror of two DOF with compensation current routing”, Journal of Micromechanics and Microengineering, vol. 14, pp. 1455–1461, 2004.
    [44] J.W. Judy, “Magnetic microactuators with polysilicon flexures,” Masters Thesis, Department of EECS, University of California, Berkeley, 1994.
    [45] J.W. Judy, and R.S. Muller, “Magnetic microactuation of torsional polysilicon structures,” Transducers’95, vol. 1, June, 1995, pp. 332-335.
    [46] J.W. Judy, R.S. Muller, and H.H. Zappe, “Magnetic microactuation of polysilicon flexure structures,” Journal of Microelectromechanical Systems, vol. 4, pp. 162-169, 1995.
    [47] Y. Okano and Y. Hirabayashi, “Magnetically actuated micromirror and measurement system for motion characteristics using specular reflection” IEEE Journal on Selected Topic in Quantum Electronics, vol. 8, pp. 19-25, 2002.
    [48] H. A. Yang and W. Fang, “A novel coil-less Lorentz force 2D scanning mirror using Eddy current,” IEEE MEMS International Conference, Istanbul, Turkey, January, 2006, pp.774-777.
    [49] H. A. Yang, T. L. Tang, S. T. Lee, and W. Fang, “A novel coil-less scanning mirror using Eddy current Lorentz force and magnetostatic force,” Journal of Microelectromechanical System, vol. 16, pp.511-520, 2007.
    [50] A. D. Yalcinkaya, H. Urey, and S. Holmstrom, “NiFe plated biaxial MEMS scanner for 2-D imaging,” IEEE Photonics Technology Letters, vol. 19, pp. 330-332, 2007.
    [51] R. Sprague, T. Montague, and D. Brown, “Bi-axial magnetic drive for Scanned Beam Display mirrors,” in Proc. SPIE- MOEMS Display and Imaging Systems III, vol. 5721, San Jose, CA, January, 2005, pp. 1-13.
    [52] Ç. Ataman and H. Urey, “Magnetic actuated FR4 scanners for compact spectrometers,” in Proc. SPIE- MEMS, MOEMS, and Micromachining III, vol. 6993, Strasbourg, France, April, 2008, pp. 699303.
    [53] U. Hofmann, M. Oldsen, H.-J. Quenzer, J. Janes, M. Heller, M. Weiss, G. Fakas, L. Ratzmann, E. Marchetti, F. D’Ascoli, M. Melani, L. Bacciarelli, E. Volpi, F. Battini, L. Mostardini, F. Sechi, M. D. Marinis, B. Wagner, “Wafer-level vacuum packaged micro-scanning mirrors for compact laser projection displays,” in Proc. SPIE- MOEMS and Miniaturized Systems VII, vol. 6887, pp. 688706, 2008.
    [54] K.-U. Roscher, H. Grätz, H. Schenk, A. Wolter, and H. Lakner, “Low-cost projection device with a 2D resonant micro scanning mirror,” in Proc. SPIE- MOEMS Display and Imaging Systems II, vol. 5348, pp. 22-23, 2004.
    [55] H. Urey, D. W. Wine, T. D. Osbo, “Optical performance requirements for MEMS-scanner based micro display,” in Proc. SPIE- MOEMS and Miniaturized Systems, vol. 4178, pp. 176-185, 2008.
    [56] K. Powell, H. Urey, M. Bayer, ”Multi-beam bidirectional raster scanning in retinal scanning displays,” in Proc. SPIE- Helmet- and Head-Mounted Display VI, vol. 7694, pp.77-88, 2001.
    [57] R. A. Conant, J. T. Nee, K. Y. Lau, R. S. Muller, “Dynamic deformation of scanning mirrors” Optical MEMS, Kauai, HI, 2000, pp. 49-50.
    [58] C. H. Ji, M. Choi, S. C. Kim, S. H. Lee, S. H. Kim, Y. Yee and J. U. Bu, ” An electrostatic scanning mirror with diaphragm mirror plate and diamond-shaped reinforcement frame” Journal of Micromechanics and Microengineering, vol. 16, pp.1033-1039, 2006.
    [59] S. T. Hsu, T. Klose, C. Drabe, and H. Schenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” Journal of Optics A: Pure and Applied Optics , pp.1-8, 2008.
    [60] H. Urey, “Torsional MEMS scanner design for high-resolution display systems,” in Proc. SPIE, vol. 4773, pp.27-37, 2002.
    [61] H. Urey, “MEMS scanners for Display and Imaging Application,” in Proc. SPIE– Optomechantronic Micro/Nano Components, Devices, and Systems, vol. 5604, pp. 218-229, 2004.
    [62] S. S. Rao, Mechanical Vibrations. 4th Ed., Singapore, Prentice, 2005.
    [63] W. C. Young and R. G.. Budynas, Roark’s Formulas for Stress and Strain. 7th Ed., New York, NY, McGraw-Hill, 2002.
    [64] C. Sooriakumar., Savage and Fugate, “A Comparative Study of Wet vs. Dry Isotropic Etch To Strengthen Silicon Micro-Machined Pressure Sensor”, Proc. Electrochem. Soc., vol. 27, pp. 259, 1995.
    [65] R. K. Fettig, J. K. Kuhn, D. H. Moseley, A. S. Kutyrev, J. Orloff, “Fracture Probability of MEMS Optical Devices for Space Flight Applications,” NASA, 1999.
    [66] H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A Resonantly Excited 2D-micro-scanning-mirror with Large Deflection,” Sensors and Actuators A, vol. 89, pp. 104-111, 2001.
    [67] D. Hah, C.-A. Choi, C.-K. Kim, and C.-H. Jun, “A Self-aligned Vertical Comb-drive Actuator on an SOI Wafer for a 2D Scanning Micromirror,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1148-1156, 2004.
    [68] T. Mitsui, Y. Takahashi, and Y. Watanabe, “A 2-axis optical scanner driven nonresonantly by electromagnetic force for OCT imaging,” Journal of Micromechanics and Microengineering, vol. 16, pp. 2482-2487, 2006.
    [69] H.-M. Jeong, Y.-H. Park, Y.-C. Cho, J. Hwang, S.-M. Chang, S.-J. K., H.-K. Jeong, J. O Kim, and J.-H. Lee, “Slow scanning electromagnetic scanner for laser display,” in Proc. SPIE- Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 7, pp. 043003, 2009.
    [70] K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, ”Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Optics Express, vol. 15, pp. 18130-18140, 2007.
    [71] N. P Pham , J. N Burghartz, and P. M Sarro, “Spray coating of photoresist for pattern transfer on high topography surfaces,” Journal of Micromechanics and Microengineering, vol. 15, pp. 691-697, 2005.
    [72] H. R. Seren, O. Ferhanoglu, G. Hatipoglu, M. Boyman, S. Olcer, C. Ataman, H. Urey, ”Miniaturized FR4 spectrometers,” International Symposium on Optomechatronic Technologies, Istanbul, September, 2009, pp. 158-163.
    [73] Y. Mizoguchi and M. Esashi, “Design and Fabrication of A Pure-Rotation Microscanner with Self-Aligned Electrostatic Vertical Combdrives in Double SOI Wafer,” in Digest Tech. Papers Transducers’05 conference, Seoul, June, 2005, pp.65-86.
    [74] H.-Y. Lin and W. Fang, “A Rib-Reinforced Micro Torsional Mirror Driven by Electrostatic Torque Generators,” Sensors and Actuators A, vol. 105, pp.1-9, 2003.
    [75] D. Malta, C. Gregory, D. Temple, C. Wang, T. Richardson, and Y. Zhang, “Optimization of Chemistry and Process Parameters for Void-Free Copper Electroplating of High Aspect Ratio Through-Silicon Vias for 3D Integration,” Electronic Components and Technology Conference, San Diego, May, 2009, pp.1301-1306.
    [76] L. T. Romankiw, “A path: from electroplating through lithographic masks in electronics to LIGA in MEMS,” Electrochemical Microsystem Technologies, vol. 42, pp. 2985-3005, 1997.
    [77] D. Sander, R. Hoffmann, V. Relling, and J. Muller, “ Fabrication of metallic microstructures by electroplating using deep-etched silicon molds “, Journal of Microelectromechanical System, vol. 4, pp.81-86, 1995.
    [78] C. H. Ahn and M. G. Allen, “Micromachined Planar Inductors on Silicon Wafers for MEMS Applications,” IEEE Transactions on Industrial Electronics, vol. 45, pp. 866-876, 1998.
    [79] M. Ruan, J. Shen, and C. B. Wheeler, “Latching Micromagnetic Relays,” Journal of Microelectromechanical Systems, vol. 10, pp.511-517, 2001.
    [80] J. Yan, S. Luanava, and V. Casasanta, “Magnetic actuation for MEMS scanners for retinal scanning displays,” in Proc. SPIE- MOEMS Display and Imaging Systems, vol. 4985, pp. 115-120, 2003.
    [81] J. J. Bernstein, T. W. Lee, F. J. Rogomentich, M. G. Bancu, Ki H. Kim, G. Maguluri, B. E. Bouma, and J. F. DeBoer, “Scanning OCT Endoscope with 2-Axis Magnetic Micromirror,” in Proc. SPIE- Endoscopic Microscopy II, vol. 6432, pp. 64320L, 2007.
    [82] C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam,” Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” Journal of Microelectromechanical System, vol. 16, pp.989-996, 2007.
    [83] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Addison-Wesley Publishing Company, Reading, MA, 1964.
    [84] A. Wolter, T. Klose, S.-T. Hsu, H. Schenk, and H. Lakner, “Scanning 2D micromirror with enhanced flatness at high frequency,” in Proc. SPIE- MOEMS Display, Imaging, and Miniaturized Microsystems IV, vol. 6114, pp. 61140L, 2006.
    [85] Shu-Ting Hsu, Thomas Klose, Christian Drabe, and Harald Schenk, “Two dimensional microscanners with large horizontal-vertical scanning frequency ratio for high-resolution laser projectors,” in Proc. SPIE- MOEMS and Miniaturized Systems VII, vol. 6887, pp. 688703, 2008.
    [86] V. Milanovic, G. A. Matus, D. T. McCormick, ”Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 462-471, 2004.
    [87] M. Lebedev, H. Sato, J. Akedo, ”Optical micro-scanner fabricated on stainless steel by aerosol deposition method,” IEEE International Symposium on Applications of Ferroelectrics, Tsukuba, Japan, Auguest, 2004, pp. 165-168.
    [88] J. Kim and L. Lin, “Electrostatic scanning micromirrors using localized plastic deformation of silicon,” Journal of Micromechanics and Microengineering, vol. 15, pp. 1777-1785, 2005.
    [89] Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, J.-H. Lee, ”Eye-type scanning mirror with dual vertical combs for laser display,” Sensors and Actuators A: Physical, vol. 126, pp. 218-226, 2005.
    [90] M. Yoda, K. Isamoto, C. Chong, H. Ito, A. Murata, H. Toshiyoshi, “Design and fabrication of a MEMS 1-D optical scanner using selfassembled vertical combs and scan-angle magnifying mechanism,” IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, Finland, Auguest, 2005, pp. 19-20.
    [91] A. A. Kuijpers, D. Lierop, R. H. M. Sanders, J. Tangenberg, H. Moddejonge, J. W. Th. Eikenbroek, T. S. J. Lammerink, R. J. Wiegerink, ”Towards embedded control for resonant scanning MEMS micromirror,” Proceedings of the Eurosensors XXIII conference, vol. 1, pp.1301-1310, 2009.
    [92] J.-W. Cho, Y.-H. Park, Y.-C. Ko, B.-L. Lee, S.-J. Kang, S.-W. Chung, W.-K. Choi, Y.-C. Cho, S.-M. Chang, J.-H. Lee, and J. Sunu, “Electrostatic 1D microscanner with vertical combs for HD resolution display,” in Proc. SPIE- MOEMS and Miniaturized Systems VI, vol. 6466, pp. 64660B, 2007.
    [93] A. Arslan, D. Brown, W. O. Davis, S. Holmstrom, S. K. Gokce, H. Urey, “Comb-Actuated Resonant Torsional Microscanner With Mechanical Amplification,” Journal of Microelectromechanical System, vol. 19, pp.936-943, 2010.
    [94] N. Asai, R. Matsuda, M. Watanabe, H. Takayama, S. Yamada, A. Mase, M. Shikida, K. Sato, M. Lebedev, J. Akedo, “ Novel high resolution optical scanner actuated by aerosol deposited PZT films,” IEEE International Conference on Micro-Electro-Mechanical Systems (MEMS’03), Kyoto, Japan, January, 2003, pp. 247-250.
    [95] C. Drabe, R. James, T. Klose, A. Wolter, H. Schenk, H. Lakner, “A new microlaser camera,” in Proc. SPIE- MOEMS and Miniaturized Systems VI, vol. 6466, pp. 64660I, 2007.
    [96] http://www.hiperscan.com/, Hiperscan
    [97] C.-H. Ji, M. Choi, S.-C. Kim, S.-H. Lee, S.-H. Kim, Y. Yee and J.-U. Bu, “An electrostatic scanning micromirror with diaphragm mirror plate and diamond-shaped reinforcement frame,” Journal of Micromechanics and Microengineering, vol. 16, pp. 1033-1039, 2006.
    [98] H. Miyajima, “Development of a MEMS electromagnetic optical scanner for a commercial laser scanning microscope,” J. Microlithogr. Microfabrication, Microsyst., vol. 3, pp. 348-357, 2004.
    [99] http://www.ipms.fraunhofer.de/de/applications/mems-scanners.html, Fraunhofer
    [100] D. E. Fulkerson, “A silicon integrated circuit force sensor,” IEEE Transactions on Electron Devices, vol. 16, pp. 867–870, 1969.
    [101] J. Grahmann, T. Graßhoff, H. Conrad, T. Sandner, and H. Schenk, ”Integrated piezoresistive position detection for electrostatic driven micro scanning mirrors,” in Proc. SPIE - MOEMS and Miniaturized Systems X, vol. 7930, pp. 79300V, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE