簡易檢索 / 詳目顯示

研究生: 洪佳欣
Chia-Hsin Hung
論文名稱: RebaCQ: Query Refinement Based on Consecutive Queries
指導教授: 陳宜欣
Yi-Shin Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 28
中文關鍵詞: 網路搜尋字串修正
外文關鍵詞: web search, query refinement
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Based on the previous study, half of queries issued into search engines have no follow-up click-through data. This indicates users usually are not satisfied with the performance of current search engines. To address this issue, this paper proposed a query refinement mechanism RebaCQ, which can assist users to obtain satisfactory pages as soon as possible. RebaCQ utilizes the user knowledge extracted from previous consecutive queries and provide a refined result set to users. Our experimental results indicate the significantly increase in the result accuracy after query refinement.http://140.113.39.130/cgi-bin/gs/hugsweb.cgi


    根據以往的研究,有半數以上送進搜尋引擎的查詢字串沒有點選任何網頁。這代表仍然有多數使用者對於目前的搜尋引擎所回傳的結果不滿意。針對這個問題,我們提出了一個修正查詢字串的機制,RebaCQ,他可以盡快的幫助使用者得到令他們滿意的結果。RebaCQ是利用使用者之前所下的連續查詢字串得到資訊,進而提供修正過的結果給使用者。我的們實驗結果指出,經過RebaCQ機制之後,結果能有大幅度的改善。

    Chinese Abstract ii Abstract iii Acknowledgement iv List of Tables vii List of Figures viii 1 INTRODUCTION 1 2 RELATEDWORK 4 3 Overview 6 4 Task Identification 8 4.1 Two Factors: String and Time . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 Similarity Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Query Refinement 14 6 Result Merging and Re-ranking 18 7 EXPERIMENTAL EVALUATION 20 7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.1.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.2.1 Accuracy of Task Identification . . . . . . . . . . . . . . . . . . . 21 7.2.2 Original no-click queries vs. refined queries . . . . . . . . . . . . . 22 7.2.3 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.2.4 Observations and Discussions . . . . . . . . . . . . . . . . . . . . 27 8 CONCLUSION AND FUTURE WORK 28 References 29

    [1] P. Anick and Overture. Using terminological feedback for web search refinement - a log-based
    study. In SIGIR, pages 88–95, 2003.
    [2] B. Billerbeck, F. Scholer, H. E. Williams, and J. Zobel. Query expansion using associated
    queries. In CIKM, pages 2–9, 2003.
    [3] O. Boydell and B. Smyth. Capturing community search expertise for personalized web search
    using snippet-indexes. In CIKM, pages 277–286, 2006.
    [4] T. Custis and K. Al-Kofahi. A new approach for evaluating query expansion: Query-document
    term mismatch. In SIGIR, pages 575–582, 2007.
    [5] L. Fitzpatrick and M. Dent. Automatic feedback using past queries: Social searching? In
    SIGIR, pages 306–313, 1997.
    [6] Q. Guo and E. Agichtein. Exploring mouse movements for inferring query intent. In SIGIR,
    pages 707–708, 2008.
    [7] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering
    recommender systems. In TOIS, pages 5–53, 2004.
    [8] R. Jones, B. Rey, O. Madani, andW. Greiner. Generating query substitutions. InWWW, 2006.
    [9] U. Lee, Z. Liu, and J. Cho. Automatic identification of user goals in web search. In International
    World Wide Web Conference Committee(IW3C2), pages 391–400, 2005.
    [10] Y. Li, R. Krishnamurthy, S. Vaithyanathan, and H. V. Jagadish. Getting work done on the
    web: Supporting transactional queries. In SIGIR, pages 557–564, 2006.
    [11] F. Liu, C. Yu, and b. . C. y. . . p. . . Weiyi Meng, title = Personalized web search by mapping
    user queries to categories.
    [12] P.-C. Liu and Y.-S. Chen. Are we searching for the same thing? a large-scale analysis of
    search engine logs. 2007.
    [13] H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for collaborative filtering.
    In SIGIR, pages 39–46, 2007.
    [14] J. Muramatsu andW. Pratt. Transparent queries: Investigating users’ mental models of search
    engines. In SIGIR, pages 217–224, 2001.
    [15] J. Parikh and S. Kapur. Unity: Relevance feedback using user query logs. In SIGIR, pages
    689–690, 2006.
    [16] F. Radlinski and S. Dumais. Improving personalized web search using result diversification.
    In SIGIR, pages 691–692, 2006.
    [17] J. W. Ratcliff and D. Metzener. Pattern matching: The gestalt approach. In Dr. Dobb’s
    Journal, page 46, 1988.
    [18] S. Robertson and K. S. Jones. Relevance weighting of search terms. In Journal of the American
    Society for Information Science, pages 129–146, 1976.
    [19] J. Rocchio. Relevance feedback in information retrieval. In The SMART Retrieval System,
    1971.
    [20] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information re-retrieval: Repeat queries in
    yahoo’s logs. In SIGIR, pages 151–158, 2007.
    [21] S. Wedig and O. Madani. A large-scale analysis of query logs for assessing personaliztion
    opportunities. In KDD, pages 742–747, 2006.
    [22] R. W. White, C. L. A. Clarke, and S. Cucerzan. Comparing query logs and pseudo-relevance
    feedback for web-search query refinement. In SIGIR, 2007.
    [23] Z. Zhang and O. Nasraoui. Mining search engine query logs for query recommendation. In
    WWW, pages 22–26, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE