簡易檢索 / 詳目顯示

研究生: 江茂宣
Maw-Shiuan Jiang
論文名稱: X光3D微結構加工與PMMA溶脹現象之研究
X-Ray Lithography-based 3D Micro Fabrication and the Study of Swelling Effect of PMMA
指導教授: 傅建中
Chien-Chung Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: LIGAX-ray移動光罩3D微結構溶脹現象
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 標準LIGA製程使用X光進行微影,所製作的微結構具有高精度與高深寬比等優點,但此製程僅能製作垂直側壁的微結構,限制了LIGA製程的應用範圍,為了克服此限制,移動光罩概念便衍生而出,將LIGA技術拓展至三維加工領域。

    本文針對移動光罩技術進行研究。首先以DoseSim劑量模擬軟體,模擬曝光後光阻內部的劑量分佈情形,並配合實驗找出可被顯影液蝕刻之最小劑量,建立曝光劑量與顯影深度之關係;接著利用微影、電鑄及蝕刻三項技術,製作可有效阻擋X光的光罩。在微結構加工部份,首先針對欲加工之微結構設計光罩圖形,利用承載試片的三維移動平台,在曝光同時給予等速度移動,成功製作多種曲率之微光柵陣列;亦可控制加工路徑上各位置的停留時間,只需簡單的光罩圖形,即可達到不同的劑量分佈,製作出特殊形狀的3D微結構。

    此外,本文也針對實驗中發現的PMMA溶脹現象進行研究。首先,找出發生此現象的可能原因,由實驗結果研判,當曝光劑量小於200J/cm3時,顯影液無法將PMMA溶解,卻因為溶脹現象而形成凸起結構;並由實驗得知曝光與顯影為最主要的影響因素,藉由曝光劑量與顯影時間的控制,可製作各種高度的凸起結構。


    X-ray lithography was good at fabricating high resolution and high aspect ratio microstructures. But this process could only fabricate microstructures with vertical wall which has largely limited the versatility in the applications of LIGA process. In order to apply the process to various applications. The moving mask technique has been developed to realize 3D microstructures with free shaped wall.

    In this study, we try to fabricate 3D microstructures using the moving mask technique. First, we simulated the exposed dosage distribution over a photoresist by using DoseSim software, coupled with the experimental results of exposure and develop. We found the minimum dosage which would be etched by GG developer, then drew the relationship between exposed dosage and processed depth. By combining UV lithography with subsequent electroforming and etching technique, we have produced an X-ray mask with good absorptivity of X-ray dosage. In the moving mask technique, the shape of a microstructure is defined by controlling a mask pattern and motion path of a photoresist. We have successfully produced 3D microstructures with special shape.

    In addition, we found a new phenomenon of swelling effect of PMMA. First, we looked for the possible reason to cause swelling effect. The experimental results showed that PMMA will not be dissolved by GG developer when dosage is less than 200J/cm3. On the contrary, microstructures were produced by swelling effect of PMMA. The main influences of swelling effect are exposed dosage and develop time. We have produced microstructures with various height by controlling both influences.

    中文摘要.........................................................................................................................I Abstract..........................................................................................................................II 誌謝..............................................................................................................................III 目錄..............................................................................................................................IV 圖目錄..........................................................................................................................VI 表目錄...........................................................................................................................X 第一章 簡介..................................................................................................................1 第二章 文獻回顧..........................................................................................................4 2.1 3D微結構之發展.............................................................................................4 2.2 X光曝光與顯影...............................................................................................7 2.2.1 吸收劑量計算......................................................................................8 2.2.2 光阻分子量改變................................................................................10 2.2.3 顯影速率............................................................................................11 2.2.4 微影結果分析研究............................................................................13 2.3 研究動機.......................................................................................................16 第三章 實驗設備........................................................................................................17 3.1 光束線19A曝光站........................................................................................17 3.2 三軸運動控制平台.......................................................................................18 第四章 X光3D微結構加工........................................................................................20 4.1 曝光劑量與深度之關係...............................................................................20 4.2 X光光罩製作.................................................................................................21 4.2.1 X光光罩簡介......................................................................................21 4.2.2 X光光罩製程......................................................................................21 4.2.3 製程問題與解決辦法........................................................................23 4.3 多次來回移動加工.......................................................................................26 4.4 步階式加工...................................................................................................28 4.5 以劑量累積方式加工...................................................................................31 第五章 PMMA溶脹現象之研究................................................................................33 5.1 PMMA曝光後所產生之結構凸起現象........................................................33 5.2 熱膨脹現象...................................................................................................37 5.3 試片與顯影液發生反應...............................................................................38 5.4 凸起結構相關特性.......................................................................................43 5.4.1 結構是否會隨時間而逐漸萎縮........................................................43 5.4.2 顯影時試片擺放之角度對結構的影響............................................44 5.4.3 光源與試片並非正交時之影響........................................................44 5.5 造成結構凸起之可能原因-高分子溶脹現象...........................................46 5.6 改以掃描式曝光製作凸起結構...................................................................47 5.6.1 凸起結構頂部形狀的變化................................................................47 5.6.2 拉長顯影時間....................................................................................49 5.7 曝光劑量與顯影時間對凸起結構之影響...................................................51 5.8 利用溶脹現象所製作之微結構...................................................................58 第六章 結論與未來工作............................................................................................61 5.1 結論...............................................................................................................61 5.2 未來工作.......................................................................................................61 參考文獻......................................................................................................................62

    [1] Rembold, “微機電概論”, 臺北市, 高立, 2000.
    [2] W. Menz, “Microsystem technology”, New York, Wiley-VCH, 2002.
    [3] H. Lehr, W. Ehrfeld, “Advanced Microstructure products by Synchrotron radiation Lithography, proc. of the European Symposium on Frontiers in Science and Technology with Synchrotron Radiation”, France, Aixen-Provence, 1994.
    [4] D. Y. Oh, K. Gil, S. S. Chang, “A tetrahedral three-facet micro mirror with the inclined deep X-ray process”, Sensors and Actuators, A93, pp.157-161, 2001.
    [5] S. J. Moon, “Fabrication of microneedle array using inclined LIGA process”, TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, 2003.
    [6] M. McCormick, E. Chowanietz, A. Lees, “Microengineering design and manufacture using the LIGA process”, Engineering Science and Education Journal, 3(6), pp.255-262, 1994.
    [7] C. Cuisin ,Y. Chen , D. Decanini , A. Chelnokov , F. Carcenac , A. Madouri , J. M. Lourtioz , H. Launois , Fabrication of three-dimensional microstructures by high resolution x-ray lithography , Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, v 17, pp. 3444-3448.November/December, 1999.
    [8] Tabata, N. Matsuzuka, “3D fabrication by Moving Mask Deep X-ray Lithography (M2DXL) with multiple stages”, MEMS 2002, pp.180-183, 2002.
    [9] S. Sugiyama, S. Khumpuang, G. Kawaguch, “Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications”, Journal of Micromechanics and Microengineering, pp.1399-1404, 2004.
    [10] Y. Cheng, N. -Y. Kuo, C. H. Su, “Dose distribution of synchrotron x-ray penetrating materials of low atomic numbers”, Review of Scientific Instrument, 68(5), pp.2163-2166, 1997.
    [11] P. Meyer, J. Schulz, L. Hahn, “DoseSim: Microsoft-Windows graphical user interface for using synchrotron x-ray exposure and subsequent development in the LIGA process”, Review of Scientific Instrument, 74(2), pp.1113-1119, 2003.
    [12] W. Schnabel, H. Sotobayashi, “Prog. Polym. Sci.”, 9, S.297, 1983.
    [13] K. A. Valiev, “The Physics of Submicron Lithography”, New York, Plenum, pp.380, 1992.
    [14] O. Schmalz, M. Hess , R. Kosfeld, “Structural changes in poly(methyl methacrylate) during deep-etch X-ray synchrotron radiation lithography”, Angewandte Makromolekulare Chemie, 239(1), pp.63-106, 1996.
    [15] 周敏傑, “低應力、高硬度、厚微結構之X光微影及電鍍技術”, 國立清華大學材料科學工程研究所, 博士論文, 2004.
    [16] 楊禮仲, “LIGA製程中之微影及熱壓的研究”, 國立清華大學材料科學與工程研究所, 碩士論文, 1998.
    [17] A. El-Kholi, J. Mohr, R. Stransky, “Ultrasonic supported development of irradiated micro-structures”, Journal of Microelectronic Engineering, 23, pp.219-222, 1994.
    [18] J. Zanghellini, A. Ei-kholi, J. Mohr, “Development behaviour of irradiated microstructures”, Journal of Microelectronic Engineering, 35, pp.409-412, 1997.
    [19] J. Zanghellini, A. El-Kholi, J. Mohr, F. J. Pantenburg, “New strategies for high aspect ratio microstructure”, Microsyt.Technol, 4, pp.94-97, 1998.
    [20] J. S. Greeneich, “Developer characteristics of poly(methyl methacrylate) electron resist”, J. Electrochem. Soc., 122, pp.970-976,1975.
    [21] Z. Liu, F. Bouamrane, M. Rouillay, R.K. Kupka, “Resist dissolution rate and inclined-wall structures in deep X-ray lithography”, J. Micromech. Microeng., 8 (4), pp.293-300, 1998.
    [22] M. X. Tan, M. A. Bankert, S. U. Griffiths, A. Ting, D. R. Boehme, S. Wilson, L. M. Balser, “PMMA development studies using various synchrotron sources and exposure conditions”, SPIE 3512, pp.262-270, 1998.
    [23] P. Meyer, A. El-Kholi, J. Mohr, C. Cremers, F. Bouamrane, S. Megtert, “Study of the development behaviour of irradiated foils and microstructure”, SPIE 3874, pp312-320, 1999.
    [24] P. Meyer, A El-Kholi, J. Schulz, “Investigations of the development rate of irradiated PMMA microstructures in deep X-ray lithography,” Microelectronic Engineering, 63, pp.319-328, 2002.
    [25] 陳秋能, “x光深刻術能譜對於表面粗糙度之影響”, 國立清華大學動力機械工程研究所, 碩士論文, 2001.
    [26] C. M. Cheng, R. H. Chen, “Development behaviours and microstructure quality of downward-development in deep x-ray lithography,” Journal of Micromechanics and Microengineering, pp.692-696, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE