研究生: |
陳煥璋 Huan-Jhang Chen |
---|---|
論文名稱: |
具智慧非反向起動強健無位置感測永磁同步馬達驅動系統之研製 Design and implementation of a robust sensorless permanent-magnet synchronous motor drive with intelligent non-reversible starting |
指導教授: |
廖聰明
Chang-Ming Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 166 |
中文關鍵詞: | 永磁同步馬達 、無位置感測控制 、強健控制 、數位信號處理器 、應電勢估測 、換相調控 、初始位置偵測 、非反向啟動 、切換式整流器 、隨機脈寬調變切換 、振動降低 、速度漣波降低 |
外文關鍵詞: | Permanent-magnet synchronous motor, sensorless control, robust control, DSP, back-EMF estimation, commutation tuning, initial rotor position estimation, unidirectional starting, switch-mode rectifier, random PWM switching, vibration reduction, speed ripple reduction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研發一具智慧非反向起動之無位置感測永磁同步馬達(Permanent-magnet synchronous motor, PMSM)驅動系統。首先,建構一具有前端單相切換式整流器之標準永磁同步馬達驅動系統,經由適當之必要控制機構設計,在具有良好之馬達驅動特性下,亦兼有良好交流入電電力品質。特定言之,藉由所提簡易強健電流追控誤差消除控制,可得緊密之電流波形命令追控特性。在數位控制方面,以一共通數位信號處理器(Digital signal processor, DSP)實現所建馬達驅動系統中兩組成電力電路之全數位控制法則。特定言之,本論文採用國產數位信號處理器,解決且提升其於交流馬達之驅動控制能力。
眾所皆知,轉矩漣波及振動之降低有助於馬達驅動系統之噪音降低。因此,本論文接著探究PMSM之轉矩漣波及振動之可能發生源,以及一些降低方法。然後從事一些影響所建PMSM驅動系統速度漣波及振動關鍵因素之實測研究。另外,亦提出一轉矩電流命令注入令補償降低控制方法並評估其效用。
最後,本論文開發一無位置感測之永磁同步馬達驅動系統。永磁同步馬達轉子之磁極位置先由所提之智慧型策略偵測判定,然後設定電流控制脈寬調變機構之啟始相位,使PMSM以同步馬達模式非反向起動。在馬達運轉之同時其反電動勢由所提之強健電流控制機構估出,並據以從事PMSM之無位置感測向量控制。所提非反向起動之理論、運轉特性及性能改善控制法則等事務文中均詳予介紹。除此之外,本論文亦設計換相調控機構以得等值之最大單位電流轉矩產生特性。
This thesis is mainly concerned with the development of a position sensorless permanent-magnet synchronous motor (PMSM) drive with intelligent non-reversible starting. First, a standard PMSM drive with single-phase switch-mode rectifier (SMR) front-end is established. The necessary control schemes are designed to yield satisfactory motor driving performance with good line drawn power quality. Specifically, a simple robust current error cancellation controller is applied to yield closer current waveform tracking control. In digital control aspect, the control algorithms of two power stages are realized in a common digital signal processor (DSP) based digital control environment. And more specifically, the domestic manufactured DSP is employed to promote its application ability in AC motor drive.
As generally recognized, torque ripple and vibration reductions are helpful in the reduction of acoustic noise of a motor drive. Hence next in this thesis, the possible origins of torque ripple and vibration of PMSMs are explored, and some remedies in their reductions are also understood. Then the experimental studies concerning some affecting factors for the established PMSM drive are made. And the reduction control approach via robust torque current command injection is proposed and evaluated its effectiveness.
Finally, a sensorless control scheme for PMSM drive is developed in this thesis. The PMSM rotor magnet polarity is first identified using the proposed intelligent approach. Then it is smoothly started in synchronous motor mode in unidirection. Meanwhile the motor back-EMF is estimated by the developed robust current control scheme, and it is employed for performing the PMSM sensorless vector control. Theoretic basis of the proposed non-reversible starting approach, its operation characteristics and possible improvements in methodology and scheme are described in detail. And furthermore, a commutation instant tuning scheme is designed to yield equivalent maximum torque per ampere characteristics.
154
REFERENCES
A. AC Motors and PMSMs
[1] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and
Drive System, New York: The Institute of Electrical and Electronics Engineers,
Inc., 2002.
[2] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall
Inc., 2002.
[3] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey:
Prentice Hall, 2001.
[4] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York:
McGraw Inc., 1994.
[5] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans.
Elect. Electron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
[6] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The
performance comparison of SPMSM, IPMSM and SynRM in use as
air-conditioning compressor,” in Proc. IEEE IAS, 1999, vol. 2, pp. 840-845.
[7] E. Sat., “Permanent-magnet synchronous motor drives for hybrid electric
vehicles,” IEEJ Trans. Elect. Electron. Eng., no.2, pp. 162-168, 2007.
[8] S. Kawano, H. Murakami and N. Nishiyama, “High performance design of an
interior permanent magnet synchronous motor for electric vehicles,” in Proc. IEEE
PCC-Nagoka’97, 1997, pp. 33-36.
[9] D. Zarko, D. Ban and T.A. Lipo, “Analytical calculation of magnetic field
distribution in the slotted air gap of a surface permanent-magnet motor using
complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp.
1828-1837, 2006.
[10] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent magnet
synchronous motor magnet designs with skewing for torque ripple and cogging
torque reduction,” in Proc. IEEE IAS, 2007, pp. 1552-1559.
[11] G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging analysis for fractional
slot/pole permanent magnet synchronous motors,” in Proc. UPEC, 2007, pp.
188-191.
B. Modeling and Parameter Estimation
[12] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent
magnet motor drives, part I: the permanent-magnet synchronous motor drive,”
IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[13] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor
parameters,” in Proc. IEEE Ind. Appl., 1997, vol. 1, pp. 29-34.
[14] S. Moreau, R. Kahoul and J. P. Louis, “Parameters estimation of permanent
magnet synchronous machine without adding extra-signal as input excitation,” in
Proc. IEEE Ind. Electron., 2004, vol. 1, pp. 371-376.
[15] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter
model for an interior PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 38,
no. 3, pp. 645-650, 2002.
[16] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and D. Min, “Analytical
model for permanent magnet motors with surface mounted magnets,” IEEE Trans.
Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[17] M. Kondo, “Parameter measurements for permanent magnet synchronous
machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
C. Switching and Dynamic Controls of PMSM Drives
[18] J. Holtz, “Pulsewidth modulation-a survey,” IEEE Trans. Ind. Electron., vol. 39,
no. 5, pp. 410-420, 1992.
[19] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase
voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45,
no. 5, pp. 691-703, 1998.
[20] C. Butt, M. A. Hoque and M. A. Rahman, ”Simplified fuzzy logic based MTPA
speed control of IPMSM drive,” in Proc. IEEE IAS, 2003, vol. 1, pp. 499-506.
[21] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter
for linear PMSM driven magnetic suspended positioning system,” IEEE Trans.
Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[22] K. H. Kim, I. C. Baik, G. W. Moon and M. J. Youn, “A current control for a
permanent magnet synchronous motor with a simple disturbance estimation
scheme,” IEEE Trans. Control. Syst. Technol., vol. 7, no. 5, pp. 630-633, 1999.
[23] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang,
“Robust current control for brushless DC motor,” in Proc. IEE Electric Power
Appl., 2000, vol. 147, no. 6, pp. 503-512.
[24] M. A. T. F. de Sousa, S. Caux and M. Fadel, “Design of robust controllers for
PMSM drive fed with PWM inverter with inertia load variation,” in Proc. IEEE
Ind. Electron., 2006, vol. 1, pp. 217-222.
[25] Y.A.-R.I. Mohamed and E. F. El-Saadany, “A current control scheme with an
adaptive internal model for torque ripple minimization and robust current
regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1,
pp. 92-100, 2008.
[26] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet
synchronous motor drive based-on neuro-fuzzy approach,” in Proc. IEEE PEDS,
2005, vol. 1, pp. 602-606.
[27] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control
for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[28] S. Shinnaka, “A new norm based current control method for energy
efficient/wide-speed-range drive of salient-pole permanent-magnet synchronous
motors,” in Proc. IEEE PESC, 2006, pp. 1-7.
[29] A. Nasiri, “Full digital current control of permanent magnet synchronous motors
for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp.
1531-1537, 2007.
[30] B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode
Speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT,
2006, pp. 1301-1308.
[31] A. Rahideh, M. Karimi, A. Shakeri and M. Azadi, “High performance direct torque
control of a PMSM using fuzzy logic and genetic algorithm,” in Proc. IEEE
IEMDC, 2007, vol. 2, pp. 932-937.
[32] S. Hassaine, S. Moreau, C. Ogab and B. Mazari, “Robust speed control of PMSM
using generalized predictive and direct torque control techniques,” in Proc. IEEE
ISIE, 2007, pp. 1213-1218.
[33] Y.A.-R.I. Mohamed, “Direct instantaneous torque control in direct drive
permanent magnet synchronous motors-a new approach,” IEEE Trans. Energy
Convers., vol. 22, no. 4, pp. 829-838, 2007.
[34] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed
control for a PM synchronous motor using the synergetic approach to control
theory,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3397-3402.
[35] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller
design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007,
vol. 1, pp. 776-780.
[36] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of
PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[37] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA
speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp.
1529-1535, 2004.
[38] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on
neural and fuzzy techniques,” Power Electronics and Applications, 2007 European
Conference, 2007, pp. 1-10.
[39] M. I. Chy and M. N. Uddin, “Recent developments of artificial intelligent
controllers for IPM motor drive applications,” in Proc. IEEE ICIT, 2006, pp.
253-258.
[40] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive
speed control for vector controlled permanent magnet synchronous motor drive,”
in Proc. IEEE PEDS, 2006, vol. 1, pp. 618-623.
[41] Y. A. R. Mohamed, “Adaptive self-tuning speed control for permanent-magnet
synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21,
no. 4, pp. 855-862, 2006.
[42] T. N. Shi, X. C. Wang, C. L. Xia and Q. Zhang, “Adaptive speed control of PMSM
based on wavelet neural network,” in Proc. IEEE ISIE, 2007, pp. 2842-2847.
D. Performance Improvement Control
[43] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation
tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., 1999, vol.
146, no. 6, pp. 678-684.
[44] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control
and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2,
pp. 1045-1051.
[45] H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive
with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5,
pp. 747-756, 2002.
[46] S. Bolognani, L. Sgarbossa and M. Zordan, “Self-tuning of MTPA current vector
generation scheme in IPM synchronous motor drives,” in Proc. European Conf.
Power Electron. and Appl., 2007, pp. 1-10.
[47] J. Soltani and M. Pahlavaninezhad, “Adaptive backstepping based controller
design for interior type PMSM using maximum torque per ampere strategy,” in
Proc. PEDS, 2006, vol. 1, pp. 596-601.
[48] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface
permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol.
47, no. 1, pp. 115-122, 2000.
[49] J. Holtz and L. Springob, “Identification and compensation of torque ripple in
high-precision permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol.
43, no. 2, pp. 309-320, 1996.
[50] J. X. Xu, S. K. Panda, Y. J. Pan, T. H. Lee and B. H. Lam, “A modular control
scheme for PMSM speed control with pulsating torque minimization,” IEEE
Trans. Ind. Electorn., vol. 51, no. 3, pp. 526-536, 2004.
[51] M. Lukaniszyn, M. Jagiela and R. Wrobel, “Optimization of permanent magnet
shape for minimum cogging torque using a genetic algorithm,” IEEE Trans.
Magn., vol. 40, no. 2, pp. 1228-1231, 2004.
[52] M. N. Uddin, “An adaptive filter based torque ripple minimization of a fuzzy logic
controller for speed control of a PM synchronous motor” in Proc. IEEE IAS, 2005,
vol. 2, pp. 1300-1306.
[53] D. K. Kim, K. W. Lee and B. I. Kwon, “Commutation torque ripple reduction in a
position sensorless brushless DC motor drive,” IEEE Trans. Power Electron., vol.
21, no. 6, pp. 1762-1768, 2006.
[54] K. Y. Nam, W. T. Lee, C. M. Lee and J. P. Hong, “Reducing torque ripple of
brushless DC motor by varying input voltage,” IEEE Trans. Magn., vol. 42, no. 4,
pp. 1307-1310, 2006.
[55] J. P. Yun, C. W. Lee, S. H. Choi and S. W. Kim, “Torque ripples minimization in
PMSM using variable step-size normalized iterative learning control,” IEEE
Trans. Robot. Autom., pp. 1-6, 2006.
[56] S. Hattori, M. Ishida and T. Hori, “Vibration suppression control method for
PMSM utilizing repetitive control with auto-tuning function and Fourier
transform,” in Proc. IEEE IECON, 2001, vol. 3, pp. 1673-1679.
[57] K. Kawai, T. Zanma and M. Ishida, “Simultaneous vibration suppression control
of PMSM using repetitive control with Fourier series,” in Proc. IEEE ICIT, 2006,
pp. 854-859.
[58] S. Yu, Q. Zhao and R. Tang, “Researches on noise and vibration characteristics of
large-capacity permanent magnet synchronous machine,” in Proc. IEEE ICEMS,
vol. 2, 2001, pp. 846-849.
[59] A. Shimada, T. Zanma, S. Doki and M. Ishida, “Current compensation signal in
suppression control for frame vibration of PMSM by sensorless control,” in Proc.
IEEE PCC, 2007, pp. 874- 78.
[60] R. Monajemy and R. Krishnan, “Implementation strategies for concurrent flux
weakening and torque control of the PM synchronous motor,” in Proc. IEEE
IAS, 1995, vol. 1, pp. 238-245.
[61] M. Zordan, P. Vas, M. Rashed, S. Bolognani and M. Zigliotto, “Field-weakening in
high-performance PMSM drives: a comparative analysis,” IEEE Ind. Appl. Conf.,
vol. 3, pp. 1718-1724, 2000.
[62] T. Schneider, T. Koch and A. Binder, ”Comparative analysis of limited field
weakening capability of surface mounted permanent magnet machines,” in Proc.
IEE Electric Power Appl., 2004, vol. 151, no. 1, pp. 76-82.
[63] M. M. Bech, T. S. Frederiksen and P. Sandholdt, “Accurate torque control of
saturated interior permanent magnet synchronous motors in the field-weakening
region,” in Proc. IEEE IAS, 2005, vol. 4, pp. 2526-2532.
[64] Z. Zhouyun, G. Jun, W. Shi and X. Guoqing, “Field-weakening control of PMBM
based on instantaneous power theory,” in Proc. ICVES, 2006, pp. 250-254.
[65] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor
ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2,
pp. 607-614, 2004.
[66] W. Zhigan, G. Zhou and Y. Jianping, “Line adaptive PAM & PWM drive for
BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267.
[67] K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with
soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS,
2006, vol. 1, pp. 793-798.
E. Switching Mode Rectifiers
[68] B. Singh, B. N. Singh, A. Chandra, K. AI-Handdad, A. Panda and P. D. Kothari,
“A review of single-phase improved power quality AC-DC converters,” IEEE
Trans. Electron. Ind., vol. 50, no. 5, pp. 962-981, 2003.
[69] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor
correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755,
2003.
[70] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power
factor correction,” in Proc. IEEE Southeastcon’98, 1998, pp. 348-353.
[71] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc.
IEEE PEDES, 1996, vol. 2, pp. 637-643.
[72] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected
converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35, 2005.
[73] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated
rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron.,
vol. 17, no. 6, pp. 963-970, 2002.
[74] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust
ripple compensation and current waveform controls,” IEEE Trans. Power
Electron., vol. 19, no. 2, pp. 560-566, 2004.
[75] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust
varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no.
6, pp. 1417-1425, 2004
[76] J. Yungtaek, M. M. Jovanovic, K. H. Fang and Y. M. Chang, “High-power-factor
soft-switched boost converter,” IEEE Trans. Power Electron., vol. 21, no. 1, pp.
98-104, 2006.
[77] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering
nonlinear behavior,” IET Electric Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
[78] M. Orabi, R. Haron and A. El-Aroudi, “Comparison between nonlinear-carrier
control and average-current-mode control for PFC converters,” in Proc. IEEE
PESC, 2007, pp. 1349-1355.
[79] P. Wolfs and P. Thomas, “Boost rectifier power factor correction circuits with
improved harmonic and load voltage regulation responses,” in Proc. IEEE PESC,
2007, pp. 1314-1318.
[80] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless
PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390,
2008.
F. Random PWM Switching Control
[81] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM
drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6,
no. 3, pp. 356-363, 1991.
[82] R. L. Kirlin, S. Kwok, S. Legowski and A. M. Trzynadlowski, “Power spectra of a
PWM inverter with randomized pulse position,” IEEE Trans. Power Electron., vol.
9, no. 5, pp. 463-472, 1994.
[83] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and
implementation of a random frequency PWM inverter,” IEEE Trans. Power
Electron., vol. 15, no. 5, pp. 843-854, 2000.
[84] B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust
spectrum shaping,” IEEE Trans. Aeros. Electron. Syst., vol. 37, no. 2, pp. 619-629,
2001.
[85] V. C. Valchey, D. M. Kovachey and A. P. Van den Bossche, “A practical approach
to randomized pulse-width modulation,” in Proc. IEEE IECON, 2005, pp. 514-518.
[86] B. J. Kang and C. M. Liaw, “Development of a robust random switching hysteresis
PWM inverter for linear positioning control,” Electric Power Components and
Systems, vol. 30, no. 7, pp. 741-767, 2002.
[87] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust
varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no.
6, pp. 1417-1425, 2004.
G. Sensorless Control
[88] D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless
control of PM synchronous motors and brushless DC motors-an overview and
evaluation,” in Proc. IEEE Power Electron. and Appli., 2005, pp. 10.
[89] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost
sensorless control of permanent magnet motors - an overview and evaluation,” in
Proc. Electric Mach. and Drives, 2005, pp. 1681-1688.
[90] D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless
control of PM synchronous motors and brushless DC motors - an overview and
evaluation,” in Proc. European Conf. Power Electronics Appl., 2005, pp. 1-10.
[91] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control for all types of
synchronous motors using an on-line parameter identification,” in Proc. IEEE
IECON, 2004, vol. 1, pp. 975-980.
[92] R. S. Miranda, C. B. Jacobina, E. M. Lima, A. C. Oliveira and M. B. R. Correa,
“Parameter and speed estimation for implementing low speed sensorless PMSM
drive system based on an algebraic method,” in Proc. IEEE APEC, 2007, pp.
1406-1410.
[93] M. Rashed, P. F. Macconnell, A. F. Stronach and P. Acarnley, “Sensorless
indirect-rotor-field-orientation speed control of a permanent-magnet synchronous
motor with stator-resistance estimation,” IEEE Trans. Ind. Electron., vol. 54, no. 3,
pp. 1664-1675, 2007.
[94] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of
permanent-magnet synchronous motors using online parameter identification
based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2,
pp. 363-372, 2006.
[95] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet
machine for sensorless control based on high-frequency signal injection,” IEEE
Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[96] A. Piippo and J. Luomi, “Adaptive observer combined with HF signal injection for
sensorless control of PMSM drives,” in Proc. IEEE Conf., 2005, pp. 674-681.
[97] G. Qiujian, Z. Li, Z. Feng and W. Xuhui, “A novel sensorless control method for
IPM synchronous machine drives by carrier signal injection based on magnetic
saliency,” in Proc. IEEE IECON, 2006, pp. 1023-1028.
[98] C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects for
sensorless drives based on high-frequency signal injection,” in Proc. IEEE IAS,
2006, vol. 5, pp. 2466-2471.
[99] C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects in
high-frequency-signal-injection-based sensorless PM motor drives,” IEEE Trans.
Ind. Appl., vol. 43, no. 5, pp. 1258-1265, 2007.
[100] Y. Zhang and V. Utkin, “Sliding mode observers for electric machines-and
overviews,” in Proc. IEEE IECON, 2002, vol. 3, pp. 1842-1847.
[101] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers
for position- and velocity-sensorless controls of brushless DC motors,” IEEE
Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[102] L. Jiaxi, Y. Guijie and L. Tiecai, “A new approach to estimated rotor position for
PMSM based on sliding mode observer,” in Proc. IEEE ICEMS, 2006, pp.
426-431.
[103] C. Song and X. Longya, “Position sensorless control of PMSM based on a novel
sliding mode observer over wide speed range,” in Proc. IEEE IPEMC, 2006, vol.
3, pp. 1-7.
[104] K. Paponpen and M. Konghirun, “An improved sliding mode observer for speed
sensorless vector control drive of PMSM,” in Proc. IEEE IPEMC, 2006, vol. 2,
pp. 1-5.
[105] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for
sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
[106] S. Zhe, Z. Rongxiang and W. Jing, “Sensorless control method of PMSM based on
Extended Kalman Filter,” in Proc. IEEE WCICA, 2006, vol. 2, pp. 8093-8097.
[107] M. N. Eskander, O. M. Arafa and O. A. Mahgoub, “Sensorless control of PMSM
and BDCM based on EMF Extraction and extended Kalman estimator,” in Proc.
IEEE Ind. Electron., 2006, vol. 3, pp. 2168-2175.
[108] N. M. Babak, M. T. Farid and F. M. Sargo, “Back EMF estimation-based
sensorless control of PMSM: robustness with respect to measurement errors and
inverter irregularities,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 485-494, 2007.
[109] M. A. Rahmman, M. N. Uddin and M. A. Abido, “An artificial neural network
based rotor position estimation for sensorless permanent magnet brushless DC
motor drive,” in Proc. IEEE IECON, 2006, pp. 649-654.
[110] H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive
with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5,
pp. 747-756, 2002.
H. Initial Position Detection
[111] Y. Yan and J. G. Zhu, “A survey of sensorless initial rotor position estimation
schemes for permanent magnet synchronous motors”, in Proc. AUPEC, 2004.
[112] J. Persson, M. Markovic and Y. Perriard, “A new standstill position detection
technique for nonsalient permanent-magnet synchronous motors using the
magnetic anisotropy method,” IEEE Trans. Magn., vol. 43, no. 2, pp. 554-560,
2007.
[113] J. W. Lee, “A novel method of estimating an initial magnetic pole position of a
PMSM,” in Proc. IEEE PESC, 2006, pp. 1-6.
[114] J. Mengjia, P. C. K. Luk, Q. Jianqi, S. Cenwei and L. Ruiguang, “A neural network
based initial position detection method to permanent magnet synchronous
machines,” in Proc. IEEE IPEMC, 2006, vol. 3, pp. 1-5.
[115] R. Raute, C. Caruana, J. Cilia, C.S. Staines and M. Sumner, “A zero speed
operation sensorless PMSM drive without additional test signal injection,” in Proc.
European Conf. Power Electron. Appl., 2007, pp. 1-10.
[116] M. Boussak, “Implementation and experimental investigation of sensorless speed
control with initial rotor position estimation for interior permanent magnet
synchronous motor drive,” IEEE Trans. Power Electron., vol. 20, no. 6, pp.
1413-1422, 2005.
[117] K. Akatsu, M. C. Harke and R. D. Lorenz, “SPMSM design considerations for
initial position and magnet polarity estimation using carrier signal injection,” in
Proc. IEEE IAS, 2007, pp. 2393-2398.
[118] S. Pekarek and P. Beccue, “Using torque-ripple-induced vibration to determine the
initial rotor position of a permanent magnet synchronous machine,” IEEE Trans.
Power Electron., vol. 21, no. 3, pp. 818-821, 2006.
I. DSP-Based Digital Control and Digital Signal Processor
[119] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing.
New Jersey: Prentice Hall PTR, 1999.
[120] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic
System, 4th ed. New Jersey: Prentice Hall Inc., 2002.
[121] “Single-Chip, DSP-Based High Performance Motor Controller ADMC 401,”
Analog Devices Inc., 2000.
[122] “ADSP-2100 Family User’s Manual,” Analog Devices Inc., 1995.
[123] “W90E9735 Programming Guide” Winbond Corp., 2008.
[124] “W90E9735 Library User’s Manual” Winbond Corp., 2008.
J. Others
[125] Y. H. Ho, “Position sensorless control and acoustic noise reduction study for
permanent magnet synchronous motor drive,” M.S. thesis, Dept. Electric Eng.,
National Tsing Hua Univ., ROC, 2007.
[126] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode
controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465,
1993.
[127] S. H. Li, “Development of switching mode rectifiers: modeling, control and
multi-module operations,” Ph.D. dissertation, Dept. Electric Eng., National Tsing
Hua Univ., ROC, 2004.