研究生: |
沈子翔 Shen, Tzu-Hsiang |
---|---|
論文名稱: |
可回充電池的實驗設計與分析 Design and Analysis of Rechargeable Batteries |
指導教授: |
曾勝滄
Tseng, Sheng-Tsaing |
口試委員: |
唐正
Tang, Jen 徐南蓉 HSU, NAN-JUNG 劉月琴 Liu, Regina |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 可回充式鋰電池 、電池壽命 、加速衰變試驗 、反應曲面方法 、TRP模型 |
外文關鍵詞: | Rechargeable lithium-ion, end of performance of battery, trend renewal process model, reduced TRP model |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可回充式鋰電池 (Rechargeable lithium-ion battery) 在電子產品扮演極為重要的電源供應器角色。為了能快速提供消費者有關電池壽命資訊,如何安排適當的加速壽命實驗 (或加速衰變實驗) 來準確地推估產品壽命是製造商十分重要的研究課題。唯電池的充電或放電機制何者可以當作壽命實驗之加速變數 (accelerating variable),一直是極具爭議的課題。為了能有效地解決此問題,本研究在不同充、放電應力的組合下,首先安排雙因子的實驗配置來收集電池的放電電容值及其放電溫度之衰變資料; 其次,本文提出如何利用電池的放電溫度資料來修正放電電容值; 進而可建構出兩種有雙加速變數的 trend renewal process (TRP) 模型。最後,利用最大概似估計法 (MLE) 來估計模型中的未知參數,並配合反應曲面方法 (response surface methodology) 及有母數的拔靴法 (parametric bootstrap),可推估在正常使用條件下之電池平均壽命 (end of performance) 及其 95% 信賴區間。本研究的主要貢獻是提供鋰電池平均壽命之預測推論方法; 此外,它對後續安排更經濟的逐步應力加速衰變試驗 (step-stress accelerated degradation test) 將有頗有助益。
Rechargeable lithium-ion battery plays a key role in power supply of electronics. To provide timely battery lifetime information to the potential consumers, the manufacturers have the important task to conduct an efficient accelerated degradation test (ADT) for predicting the battery lifetime. However, whether charge or discharge current of the battery should be considered an accelerating variable in the ADT is still being debated. To address this problem, we conduct a two-factor experiment under various combinations of charge and discharge currents to collect the degradation data of the discharge capacity of batteries together with their temperature data. We then propose a suitable procedure to calibrate the discharge capacity of batteries by using the temperature information. Finally, we propose two accelerated trend renewal process (aTRP) models to describe the degradation paths of the capacity of batteries. Based on these models, we can successfully predict the end of performance (EOP) of battery under normal use conditions and its 95% confidence interval. The results of this study should be valuable for the subsequent design of more economical step-stress accelerated degradation test (SSADT).
1. 林立元 (2020)。"可回充電池的逐步應力衰變試驗之建模與分析," 國立清華大學統計學研究所碩士論文。
2. Cheng, Y., Lu, C., Li, T., and Tao, L. (2015). Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach. Energy 90, 1983-1993.
3. DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science 11(3), 189-212.
4. Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time-series with a unit root. Journal of the American Statistical Association. 74(366), 427-431.
5. He, W., Williard, N., Osterman, M. and Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources 196(23), 10314-10321.
6. Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. , and Shin, Y. (1992). Testing the null hypothesis of stationary against the alternative of a unit-root-how sure are we that economic time-series have a unit-root. Journal of Econometrics 54(1-3), 159-178.
7. Lindqvist, B. H., Elvebakk, G., and Heggland, K. (2003). The trend-renewal process for statistical analysis of repairable systems. Technometrics 45(1), 31-44.
8. Long, B., Xian, W. , Jiang, L., and Liu, Z. (2013). An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries. Microelectronics Reliability 53(6), 821-831.
9. Lu, C., Tao, L. F., and Fan, H. Z. (2014). Li-ion battery capacity estimation: A geometrical approach. Journal of Power Sources 261, 141-147.
10. Miao, Q., Xie, L., Cui, H., Liang, W., and Pecht, M. (2013). Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectronics Reliability 53(6), 805-810.
11. Micea, M. V., Ungurean, L., Carstoiu, G. N., and Groza, V. (2011). Online state-of-health assessment for battery management systems. IEEE Transactions on Instrumentation and Measurement 60(6), 1997-2006.
12. Ng, S. S. Y., Xing, Y., and Tsui, K. L. (2014). A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy 118, 114–123.
13. Pattipati, B., Sankavaram, C., and Pattipati, K. R. (2011). System identification and estimation framework for pivotal automotive battery management system characteristics. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews 41(6), 869-884.
14. Shuster, J. J. (2007). Design and analysis of experiments. Methods Mol Biol 404, 235-259.
15. Tang, S. J., Yu, C., Wang, X., Guo, X., and Si, X. (2014). Remaining useful life prediction of lithium-ion batteries based on the Wiener Process with measurement error. Energies 7(2), 520-547.
16. Tsay, R. S. (1984). Regression models with time series errors. Journal of the American Statistical Association 79 (385), 118–124.
17. Tseng, S. T. and Wen, Z. C. (2000). Step-stress accelerated degradation analysis for highly reliable products. Journal of Quality Technology 32(3), 209-216.
18. Wang, Y. F., Tseng, S. T., Lindquvist, B. H., and Tsui, K. L. (2019). End of performance prediction of lithium-ion batteries. Journal of Quality Technology 51(2), 198-213.
19. Xing, Y. J., Ma, E. W. M., Tsui, K. L., and Pecht, M. (2013). An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectronics Reliability 53(6), 811-820.
20. Xu, X., Li, Z. G., and Chen, N. (2016). A hierarchical model for lithium-ion battery degradation prediction. IEEE Transactions on Reliability 65(1), 310-325.
21. Zhang, J. L. and Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources 196(15), 6007-6014.