研究生: |
官侑萱 Kuan, Yu-Hsuan |
---|---|
論文名稱: |
時軸規範下的時變金茲堡・朗道方程在二維非凸域上的混合有限元法 A Mixed FEM for TDGL Equations under Temporal Gauge on Two-dimensional Non-convex Domains |
指導教授: |
王偉成
Wang, Wei-Cheng |
口試委員: |
林文偉
Lin, Wen-Wei 楊肅煜 Yang, Suh-Yuh 朱家杰 Chu, Chia-Chieh 劉晉良 Liu, Jinn-Liang |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 時軸 、時變 、金茲堡 、朗道 、二維 、有限元法 |
外文關鍵詞: | temporal, time-dependent, Ginzburg, Landau, 2D, FEM |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金茲堡與朗道曾提出了金茲堡・朗道理論,宣稱超導體最穩定的狀態為其
對應的金茲堡・朗道能量達到最小值的時候,此時滿足最小值的變數函數即為
金茲堡・朗道方程的解。幾年後,戈爾柯夫與伊利埃伯格建構了時變金茲堡・
朗道方程來模擬第二型超導體的渦旋型態。
這篇論文裡我們介紹了兩種最低階的混合有限元法VE格式與CF格式,
金茲堡・朗道方程與時軸規範下的時變金茲堡・朗道方程均有。其中VE格式
與杜強於1998 年提出的協體積法完全相同,其論文著重於理論分析,而我們的
工作只是補足了其缺少的數值實作,因此我們的新方法只有CF格式。這兩種
方法針對金茲堡・朗道方程的格式均滿足數值上的規範不變性,而針對時軸規
範下的時變金茲堡・朗道方程的格式均能在一般情況下達到一階誤差精度,在
非凸域上亦是如此,因著我們使用的解為人工光滑解。
在論文的最末我們比較了這兩種方法在各項實驗下的結果,我們發現新提
出來的CF格式在解金茲堡・朗道方程時較有效率,而在解時軸規範下的時變
金茲堡・朗道方程時其中一個變數函數能在沒有擾動的規則網格上達到二階誤
差精度,這是兩個優於VE格式的結果。
Ginzburg and Landau proposed the Ginzburg-Landau theory which has the
postulate that the superconducting sample is in a state such that the Ginzburg-Landau
energy functional is a minimum and the minimizer serves as a solution of the Ginzburg-
Landau (GL) equations. Several years later, Gor’kov and Eliashberg established the
time-dependent Ginzburg-Landau (TDGL) equations which has a microscopic
description of the vortex state for the type II superconductors.
In this paper, we introduce two lowest-order mixed finite element methods, VEscheme
and CF-scheme, both for GL equations and TDGL equations under the temporal
gauge. The VE-scheme is identical to the covolume method proposed by Qiang Du in
1998 and the CF-scheme is our new method. Du focused on theoretical analysis of the
covolume method. We introduce the VE-scheme to serve it as the implementation of
Du’s method and compare its results with our CF-scheme. These two schemes for the
GL equations both achieve the gauge invariance property numerically. Furthermore,
these two schemes for the TDGL equations under the temporal gauge both achieve the
first error order in general case and simulate the vortex motion well not only on convex
domains but also on non-convex domains. The good results for the non-convex case
may be due to the artificial smooth solution we adopted in the experiments.
The comparisons of these two methods show that our CF-scheme is more
efficient than VE-scheme in solving the GL equations. What is more, one of the
numerical solutions in CF-scheme achieves the second error order on unperturbed
regular triangle mesh while solving the TDGL equations which is better than the VEscheme.
Accordingly, we believe our new method will have great potential for further
study in the future.
[1] S. Adler and T. Piran, Relaxation methods for gauge field equilibrium equations, Rev. Mod. Phys. 56
(1984), pp. 1-40.
[2] I. Anjam and J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements,
Postprint of the paper DOI: 10.1016/j.amc.2015.03.105 published in Applied Mathematics and Computation.
[3] D. N. Arnold and G. Awanou Finite element differential forms on cubical meshes, Math. Comput. 83
(2014), pp. 1551-1570.
[4] D. N. Arnold, D. Boffi, and R. S. Falk, Quadrilateral H(div) finite elements, SIAM J. Numer. Anal.
42 (2005), pp. 2429-2451.
[5] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques,
and applications, Acta Numerica. (2006), pp. 1-155.
[6] V. Bertia and B. Lazzaria, Some existence and uniqueness results for a stationary Ginzburg-Landau
model of superconductivity, Applicable Analysis: An International Journal, vol. 81, issu. 4, (2002), pp.
771-785.
[7] A. Buffa and S. H. Christiansen, A Dual Finite Element Complex on the Barycentric Refinement,
Math. Comput. 76 (2007), pp.1743-1769.
[8] Z. Chen, Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity,
Numer. math. 76 (1997), pp. 323-353.
[9] Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau
model in superconductivity, SIAM J. Numer. Anal. 38 (2001), pp. 1961-1985.
[10] E. Coskun and M. Kwong, Simulating vortex motion in superconducting films with the time-dependent
Ginzburg-Landau equations, Nonlinearity 10 (1997), pp.579-593.
[11] G. Crabtree, G. Leaf, H. Kaper, V. Vinokur, A. Koshelev, D. Braun, D. Levine, W. Kkwok,
and J. Fendrich, Time-dependent Ginzburg-Landau simulations of vortex guidance by twin boundaries,
Physica C. 263 (1996), pp. 401-408.
[12] F. E. Dabaghi and O. Pironneau, Stream vectors in three dimensional aerodynamics, Num. Math. 48
(1986), pp. 561-589.
[13] Q. Du, Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity, Computers
Math. Applic. 27 (1994), pp.119-133.
[14] Q. Du, Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for
superconductivity, Applic. Anal. (1994), pp. 1-17.
[15] Q. Du, Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity, Math. Comput. 67 (1998), pp. 965-986.
[16] Q. Du, Numerical approximations of the Ginzburg-Landau models for superconductivity, J. Math. Phys. 46
(2005), 095109.
[17] Q. Du, V. Faber, and M. Gunzburger, Centroidal voronoi tessellations- applications and algorithms,
SIAM Rev. 41 (1999), pp. 637-676.
[18] Q. Du, M. D. Gunzburger, and L. Ju, Constrained centroidal voronoi tessellations for surfaces, SIAM
J. Sci. Comput. 24 (2003), pp.1488-1506.
[19] Q. Du and L. Ju, Approximations of a Ginzburg-Landau model for superconducting hollow spheres based
on spherical centroidal voronoi tessellations, Math. Comput. 74 (2004), pp. 1257-1280.
[20] Q. Du and L. Ju, Numerical simulations of the quantized vortices on a thin superconducting hollow sphere,
J. Comput. Phys. 201 (2004), pp. 511-530.
[21] Q. Du, M. D. Gunzburger, and J. S. Peterson, Analysis and approximation of the Ginzburg-Landau
model of superconductivity, SIAM Rev. 34 (1992), pp. 54-81.
[22] Q. Du, M. Gunzburger, and J. Peterson, Solving the Ginzburg-Landau equations by _nite element
methods, Phys. Rev. B 46 (1992), pp. 9027-9034.
[23] Q. Du, R. A. Nicolaides, and X. Wu, Analysis and convergence of a covolume approximation of the
Ginzburg-Landau model of superconductivity, SIAM J. Numer. Anal. 35 (1998), pp. 1049-1072.
[24] Y. Enomoto and R. Kato, Computer simulation of a two-dimensional type-II super-conductor in a
magnetic filed, J. Phys. Condens. Matter 3 (1991), pp. 375-380.
[25] C. Foias and R. Temam, Remarques sur les _equations de Navier-Stokes stationnaires et les phenomenes
successifs de bifurcation, Ann. Scuola Norm-Sci 5 (1978), p. 29-63.
[26] H. Frahm, S. Ullah, and A. Dorsey, Flux dynamics and the growth of the superconducting phase,
Phys. Rev. Lett. 66 (1991), pp. 3067-3070.
[27] H. Gao, Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation,
SIAM J. Numer. Anal. 52 (2014), pp. 2574-2593.
[28] H. Gao, B. Li, and W. Su, Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for
the time-dependent Ginzburg-Landau equations in superconductivity, SIAM J. Numer. Anal. 52 (2014), pp.
1183-1202.
[29] L. E. Garcia-Castillo, A. J. Ruiz-Genoves, I. Gomez-Revuelto, M. Salazar-Palma, and T.
K. Sarkar, Third-order Nedelec curl-conforming finite element, IEEE T. Magn. 38 (2002), pp. 2370-2372.
[30] H. Gao and W. Sun A new mixed formulation and efficient numerical solution of Ginzburg-Landau
equations under the temporal gauge, SIAM J. Comput. 38 (2016), pp. A1339-A1357.
[31] A. Gillette, A. Rand, and C. Bajaj, Construction of scalar and vector finite element families on
polygonal and polyhedral meshes, De Gruyter Online 16 (2016).
[32] W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, and V. M. Vinokur,
Numerical simulation of vortex dynamics in type-II superconductors, J. Comput. Phys. 123 (1996), pp.
254-266.
[33] D. Gunter, H. Kaper, and G. Leaf, Implicit integration of the time-dependent Ginzburg-Landau
equations of superconductivity, SIAM J. Sci. Comput. (USA) 23 (2002), pp.1943-1958.
[34] R. Hiptmair, Canonical construction of finite elements, Math. Comput. 68 (1999), pp. 1325-1346.
[35] A. T. Hill and E. Suli, Approximation of the global attractor for the incompressible Navier-Stokes
equations, IMA J. Numer. Anal. 20 (2000), pp. 633-667.
[36] Y.-L. Huang, T.-M. Huang, W.-W. Lin, and W.-C.Wang, A null space free Jacobi-Davidson iteration
for Maxwell's operator, SIAM J. Sci. Comput. 37 (2015), pp. A1-A29.
[37] Y.-L. Huang, J.-G. Liu, and W.-C. Wang, A generalized MAC scheme on curvilinear domains, SIAM
J. Sci. Comput. 35 (2013), pp. B953-B986.
[38] Y. Huang, J. Li, C. Wu, and W. Yang, Superconvergence analysis for linear tetrahedral edge elements,
J. Sci. Comput. 62 (2015), pp. 122-145.
[39] A. Kameari, Symmetric second order edge elements for triangles and tetrahedra, IEEE T. Magn. 35 (1999),
pp. 1394-1397.
[40] H. Kaper and M. Kwong, Vortex configurations in type-II superconducting _lms, J. Comput. Phys. 119
(1995), pp.120-131.
[41] M. Kato and O. Sato, Numerical solution of Ginzburg-Landau equation for superconducting networks,
Physica C 392 (2003), pp.396-400.
[42] V. S. Klimov, Nontrivial solutions of the Ginzburg-Landau equations, Springer 50 (1982), pp. 252-256.
[43] J. F. Lee, D. K. Sun, and Z. J. Cendes, Tangential vector finite elements for electromagnetic field
computation, IEEE T. Magn. 27 (1991), pp. 4032-4035.
[44] F.-H. Lin, Static and moving vortices in Ginzburg-Landau theories, Progress in nonlinear differential
equations and their applications, vol. 29 (1997), pp. 71-111.
[45] F.-H. Lin and Q. Du, Ginzburg-Landau vortices/ dynamics, pinning, and hysteresis, SIAM J. Math.
Anal. Vol. 28 No. 6 (1997), pp. 1265-1293.
[46] F.-H. Lin and T. Riviere, Complex Ginzburg-Landau equations in high dimensions and codimension two
area minimizing currents, J. Eur. Math. Soc. 1 (1999), pp. 237-311.
[47] K. Mahesh, A family of high order finite difference schemes with good spectral resolution, J. Comput.
Phys. 14 (1998), pp. 332-358.
[48] P. Monk, Finite element methods for Maxwell's equations, Oxford Science Publication (2003).
[49] M. Mu, A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model, SIAM J. Sci. Comput.
18, 1028-1039 (1997).
[50] G. Mur and A. T. de Hoop, A finite-element method for computing three-dimensional electromagnetic
fields in inhomogeneous media, IEEE T. Magn. MAG-21 (1985), pp. 2188-2191.
[51] M. Mu and Y. Huang, An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations, SIAM J. Numer. Anal 35 (1998), pp. 1740-1761.
[52] J. C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980), pp. 315-341.
[53] J. C. Nedelec, A new family of mixed finite elements in 3, Numer. Math. 50 (1986), pp. 57-81.
[54] I. G. Oliveira, Magnetic flux penetration in a mesoscopic superconductor with a slit, J. Supercond. Nov.
Magn. (2014), pp. 1143-1152.
[55] Raviart PA, Thomas JM A mixedfi_nite element method for 2nd order elliptic problems, In: Dold A,
Eckmann B (eds). Mathematical aspects of finite element methods. Proceedings of the conference held in
Rome, 10-12 Dec, 1975. Springer, Berlin Heidelberg New York (Lecture Notes in Mathematics vol. 606).
[56] Z. Ren and N. Ida, Computation of magnetostatic field using second order edge elements in 3D, Compel.
18 (1999), pp. 361-371.
[57] Z. Ren and N. Ida, Solving 3D eddy current problems using second order nodal and edge elements, IEEE
T. Magn. 36 (2000) pp. 746-750.
[58] W. B. Richardson, A. L. Pardhanani, G. F. Carey, and A. Ardelea, Numerical effects in the
simulation of Ginzburg-Landau models for superconductivity, Int. J. Numer. Math. Engng. (2004), pp.
1251-1272, DOI 10.1002-nme.1010.
[59] D. Y. Vodolazov, I. L. Maksimov, and E. H. Brandt, Vortex entry conditions in type-II superconductors, effect of surface defects, Physica. C 384 (2003), pp. 211-226.
[60] J. S. Wang and N. Ida, Curvilinear and higher order 'edge' _nite elements in electromagnetic _eld
computation, IEEE T. Magn. 29 (1993), pp. 1491-1494.
[61] J. P. Webb and B. Forghani, Hierarchal scalar and vector tetrahedra, IEEE. T. Magn. 29 (1993), pp.
1495-1498.
[62] T. Winiecki and C.S. Adams, A fast semi-implicit finite di_erence method for the TDGL equations, J.
Comput. Phys. 179 (2002), p. 127-139.
[63] C. Yang, A linearized Crank-Nicolson-Galerkin FEM for the time-dependent Ginzburg-Landau equations
under the temporal gauge, Wiley Online Library DOI 10.1002/num.21869 (2014).
[64] T.V. Yioultsis and T.D. Tsiboukis, Multiparametric vector finite elements/ a systematic approach to
the construction of three-dimensional, higher order, tangential vector shape functions, IEEE T. Magn. 32
(1996), pp. 1389-1392.
[65] L. Zhong, S. Shu, G. Wittum, and J. Xu, Optimal error estimates for Nedelec edge elements for
time-harmonic Maxwell's equations, J. Comput. Math. 27 (2009), pp. 563-572.