研究生: |
許又仁 Hsu, You Ren |
---|---|
論文名稱: |
奈米柱誘導式生成樹枝狀碎形結構之製程方法與數值模擬之研究 Investigation of Dendritic Patterns Formation through Nanopost-Guided Organization: Experiment, and Numerical Simulation |
指導教授: |
陳致真
Chen, Chih-Chen |
口試委員: |
傅建中
Fu, Chien-Chung 鄭兆珉 Cheng, Chao-Min 鄭榮偉 Cheng, Jung-Wei 游佳欣 Yu, Jia-Shing |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 樹枝狀結構 、奈米柱陣列 |
外文關鍵詞: | Dendritic Patterns, Nanopost |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的研究內容可以分為兩個部分。這一個部份我們透過實驗的方法發展出一個有效率製作樹枝狀結構的方法。我們發現奈米柱陣列的結構安排可以形成一個被動式的元件,讓樹枝狀結構的分枝自主裝的過程中產生改變。一般而言製造奈米結構的製作有相當的難度,都需要昂貴的設備。在我們的系統中,我們發現奈米柱的結構安排可以影響一個微米級樹枝狀結構的分支角度分布,且在一個很短的時間就可以完成生成。在材料的選擇上,因無機鹽類低成本,容易取得,因而成為我們實驗製程上的材料選擇。
第二個部分我們透過數值模擬的方法,探討奈米柱在樹枝狀結構,於自組裝生成過程扮演的腳色。在製造策略上,大致可以分為被動式以及主動式誘導的策略。我們透過數值模擬的方法,呈現兩種策略對應在奈米柱陣列的設計方法,並呈現相關的結果進行討論,希望可以在工程上產生基礎,突破既有的自組裝結構生成的策略,提供另一個誘導結構生成的方法。
This thesis can be concluded in two parts. In the first part, we use experiments to
explore how to use an efficient way to fabricate dendritic structure. In this article, we
found through nanopost arrays arrangement can develop a passive component to
induce the branching distribution of self-organization dendritic inorganic salt
structures. It needs expensive equipment to work on these nanostructures related
topics because fabrication process is difficult. We found the structure arrangement in
nanopost array can affect the branching angle distribution in micro-scale dendritic
structure and in a very short time without complicated environment control. In our
experiment, we chose inorganic salt to create the DP because inorganic salt is
low-cost, and easy to be obtained.
The second part of this thesis, we use an independent numerical simulation
research to study how to use precursor passive geometric structure or active induction
to affect the formation process of dendritic structure. Microstructure formation can be
mainly categorized in two ways: (1) active: such as using electric field to control the
arrangement of molecules (using external force to change the morphology of
molecules or material; (2) passive: material structure forms through pre-designed
components. On the issue of engineering, the most difficult part of self-organization
structure in fabrication is there are only limited strategies can be utilized in the
fabrication control.We hope we can propose another strategy to modify this process through appropriate artificial disturbance
1. Kurland, N.E., et al., Self-assembly mechanisms of silk protein nanostructures
on two-dimensional surfaces. Soft Matter, 2012. 8(18): p. 4952-4959.
2. Hazar, M., et al., Modulating material interfaces through biologically-inspired
intermediates. Applied Physics Letters, 2011. 99(23): p. -.
3. Darwich, S., K. Mougin, and H. Haidara, From highly ramified, large scale
dendrite patterns of drying "alginate/Au NPs" solutions to capillary
fabrication of lab-scale composite hydrogel microfibers. Soft Matter, 2012.
8(4): p. 1155-1162.
4. Imai, H., Self-Organized Formation of Hierarchical Structures, in
Biomineralization I, K. Naka, Editor. 2007, Springer Berlin Heidelberg. p.
43-72.
5. Noorduin, W.L., et al., Rationally Designed Complex, Hierarchical
Microarchitectures. Science, 2013. 340(6134): p. 832-837.
6. Mhíocháin, T.R.N. and J.M.D. Coey, Chirality of electrodeposits grown in a
magnetic field. Physical Review E, 2004. 69(6): p. 061404.
7. Ma, Y.R., et al., Hierarchical, star-shaped PbS crystals formed by a simple
solution route. Crystal Growth & Design, 2004. 4(2): p. 351-354.
8. Chen, X.Y., et al., Hierarchical growth and shape evolution of HgS dendrites.
Crystal Growth & Design, 2005. 5(1): p. 347-350.
9. Cao, M.H., et al., Single-crystal dendritic micro-pines of magnetic
alpha-Fe2O3: Large-scale synthesis, formation mechanism, and properties.
Angewandte Chemie-International Edition, 2005. 44(27): p. 4197-4201.
10. Kniep, R. and S. Busch, Biomimetic growth and self-assembly of fluorapatite
aggregates by diffusion into denatured collagen matrices. Angewandte
Chemie-International Edition in English, 1996. 35(22): p. 2624-2626.
11. Busch, S., U. Schwarz, and R. Kniep, Morphogenesis and structure of human
teeth in relation to biomimetically grown fluorapatite-gelatine composites.
Chemistry of Materials, 2001. 13(10): p. 3260-3271.
12. Busch, S., U. Schwarz, and R. Kniep, Chemical and structural investigations
of biomimetically grown fluorapatite-gelatin composite aggregates. Advanced
Functional Materials, 2003. 13(3): p. 189-198.
13. Yu, S.H., et al., Biomimetic crystallization of calcium carbonate spherules
with controlled surface structures and sizes by double-hydrophilic block
copolymers. Advanced Functional Materials, 2002. 12(8): p. 541-545.
56
14. Yu, S.H., et al., Growth and self-assembly of BaCrO4 and BaSO4 nanofibers
toward hierarchical and repetitive superstructures by polymer-controlled
mineralization reactions. Nano Letters, 2003. 3(3): p. 379-382.
15. Imai, H., T. Terada, and S. Yamabi, Self-organized formation of a hierarchical
self-similar structure with calcium carbonate. Chemical Communications,
2003(4): p. 484-485.
16. Imai, H., et al., Formation of calcium phosphate having a hierarchically
laminated architecture through periodic precipitation in organic gel.
Chemical Communications, 2003(15): p. 1952-1953.
17. Terada, T., S. Yamabi, and H. Imai, Formation process of sheets and helical
forms consisting of strontium carbonate fibrous crystals with silicate. Journal
of Crystal Growth, 2003. 253(1-4): p. 435-444.
18. Imai, H., et al., Self-organized formation of porous aragonite with silicate.
Journal of Crystal Growth, 2002. 244(2): p. 200-205.
19. Fukuyo, T. and H. Imai, Morphological evolution of silver crystals produced
by reduction with ascorbic acid. Journal of Crystal Growth, 2002. 241(1-2): p.
193-199.
20. García-Ruiz, J.M., E. Melero-García, and S.T. Hyde, Morphogenesis of
Self-Assembled Nanocrystalline Materials of Barium Carbonate and Silica.
Science, 2009. 323(5912): p. 362-365.
21. García-Ruiz, J.M., et al., Self-Assembled Silica-Carbonate Structures and
Detection of Ancient Microfossils. Science, 2003. 302(5648): p. 1194-1197.
22. Zuppiroli, L., et al., Self-assembled monolayers as interfaces for organic
opto-electronic devices. European Physical Journal B, 1999. 11(3): p.
505-512.
23. Zhu, J., J. Ni, and A.J. Shih, Robust Machine Tool Thermal Error Modeling
Through Thermal Mode Concept. Journal of Manufacturing Science and
Engineering-Transactions of the Asme, 2008. 130(6).
24. Ming, N.B., M. Wang, and R.W. Peng, NUCLEATION-LIMITED
AGGREGATION IN FRACTAL GROWTH. Physical Review E, 1993. 48(1): p.
621-624.
25. Meredith, D., Practice tool condition monitoring. Manufacture Engineering
1988. 120(1): p. 34-39.
26. Debeljak, M. and S. Dzeroski, Decision Trees in Scological Modelling in
Modelling Complex Ecological Dynamics. 2001, Berlin Heidelberg: Springer.
27. Cheng, C.-M. and P.R. LeDuc, Creating Ordered Small-Scale
Biologically-Based Rods through Force-Controlled Stamping. Journal of the
American Chemical Society, 2007. 129(31): p. 9546-9547.
57
28. Bogwe, R., Self-assembly: a review of recent developments. Assembly
Automation, 2008. 28(3): p. 211-215.
29. Altintas, Y., Research on Metal Cutting, Machine Tool Vibrations and
Control. Journal of the Japan Society for Precision Engineering, 2011. 77(5): p.
470-471.
30. Kim, T., et al., Large-Scale Graphene Micropatterns via
Self-Assembly-Mediated Process for Flexible Device Application. Nano
Letters, 2012. 12(2): p. 743-748.
31. Parviz, B.A., D. Ryan, and G.M. Whitesides, Using self-assembly for the
fabrication of nano-scale electronic and photonic devices. Ieee Transactions
on Advanced Packaging, 2003. 26(3): p. 233-241.
32. Morris, C.J., S.A. Stauth, and B.A. Parviz, Self-assembly for microscale and
nanoscale packaging: Steps toward self-packaging. Ieee Transactions on
Advanced Packaging, 2005. 28(4): p. 600-611.
33. Ruiz-Carretero, A., et al., Stepwise self-assembly to improve solar cell
morphology. Journal of Materials Chemistry A, 2013. 1(38): p. 11674-11681.
34. Macaraig, L., T. Sagaw, and S. Yoshikawa, Self-Assembly Monolayer
Molecules for the Improvement of the Anodic Interface in Bulk Heterojunction
Solar Cells. Energy Procedia, 2011. 9(0): p. 283-291.
35. Kennedy, R.D., et al., Self-Assembling Fullerenes for Improved
Bulk-Heterojunction Photovoltaic Devices. Journal of the American Chemical
Society, 2008. 130(51): p. 17290-+.
36. Dang, X.N., et al., Virus-templated self-assembled single-walled carbon
nanotubes for highly efficient electron collection in photovoltaic devices.
Nature Nanotechnology, 2011. 6(6): p. 377-384.
37. Moons, E., Conjugated polymer blends: linking film morphology to
performance of light emitting diodes and photodiodes. Journal of
Physics-Condensed Matter, 2002. 14(47): p. 12235-12260.
38. Mu, W. and N.B. Ming, INSITU OBSERVATION OF
SURFACE-TENSION-INDUCED OSCILLATION OF AQUEOUS-SOLUTION
FILMS IN NEEDLE-LIKE CRYSTAL-GROWTH. Physical Review A, 1991.
44(12): p. R7898-R7901.
39. Sun, Y.L., et al., Lloyd's mirror interferometer using a single-mode fiber
spatial filter. Journal of Vacuum Science & Technology B, 2013. 31(2).
40. Su, H.-W., M.-S. Ho, and C.-M. Cheng, Probing characteristics of collagen
molecules on various surfaces via atomic force microscopy. Applied Physics
Letters, 2012. 100(23): p. -.
58
41. Smith, H.I., Low cost nanolithography with nanoaccuracy. Physica E, 2001.
11(2-3): p. 104-109.
42. Chang, E.C., et al., Improving feature size uniformity from interference
lithography systems with non-uniform intensity profiles. Nanotechnology,
2013. 24(45).
43. Kobayashi, R., Modeling and numerical simulations of dendritic crystal
growth. Physica D: Nonlinear Phenomena, 1993. 63(3–4): p. 410-423.
44. Karma, A. and W.-J. Rappel, Quantitative phase-field modeling of dendritic
growth in two and three dimensions. Physical Review E, 1998. 57(4): p.
4323-4349.
45. Chang, E.C., et al., Nanopost-Guided Self-Organization of Dendritic
Inorganic Salt Structures. Langmuir, 2014. 30(36): p. 10940-10949.