研究生: |
賴冠宇 Lai, Guan-Yu |
---|---|
論文名稱: |
親和力可調控生物素探針於螢光訊號增強及側向流量層析之檢測應用 Affinity-Switchable Biotin Probes for Signal Amplified Fluorescence Sensing and Lateral Flow Assay |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
吳淑褓
Wu, Shu-Pao 王聖凱 Wang, Sheng-Kai |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 161 |
中文關鍵詞: | 親和力可調控生物素探針 、螢光訊號增強 、側向流量層析之檢測應用 |
外文關鍵詞: | Affinity-Switchable Biotin Probes, Signal Amplified Fluorescence Sensing, Lateral Flow Assay |
相關次數: | 點閱:36 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著檢驗技術的進步,快速、低錯誤率和易操作性成為了檢驗技術開發的核心理念,相較以往耗時的儀器檢測或是需要專業人員操作的生化測試,成本低廉且容易使用的生物探針成為了現在發展的主流。
在本論文中,我們開發出新式的可調控生物素探針,利用生物素(Biotin)和鏈黴親合素(Streptavidin)之間可變親和力的結合,以達到高專一性的分析物檢測,並將其應用在螢光訊號增強以及側向流量層析的檢測。
在論文的第一部分,我們結合可調控生物素探針和環境敏感型的螢光分子SBD (4-sulfamoyl-7-amino benzoxadiazole),以進行過氧化氫(H2O2)的定性和定量,並將其用來檢驗胎牛血清(Fetal Bovine Sera)中葡萄糖的含量。
在第二部分的論文,我們將可調控生物素探針應用在競爭型的金奈米粒子側向流量層析檢測法(Competitive Lateral Flow Assay),解決了競爭型側向流量層析檢測無法以正向訊號呈現的基礎問題。我們以磺胺類小分子的檢測爲例,當環境中沒有磺胺類小分子時,因生物素和鏈黴親和素之間的立體障礙而無法鍵結,在測試線上沒有訊號產生。在磺胺類小分子的存在下,生物素和鏈黴親和素之間沒有有立體障礙,因此可以順利結合在測試線上呈現訊號。我們成功開發出第一個產生金奈米粒子正向訊號的小分子檢測側向流量層析檢測法。
Rapid, high reproducibility, and simple operation are the important factors in the development of advanced diagnostic techniques. In contrast to the time-consuming biochemical testing that required expensive instruments and skilled professionals, cost-effective and user-friendly chemical probes have emerged as the mainstream approach for chemical analysis.
In this thesis, we develop a novel affinity-switchable biotin-streptavidin binding approach for the signal amplified fluorescence sensing and lateral flow assay of small molecules. In the first part of the thesis, an affinity switchable biotin probe conjugated with an environment-sensitive SBD fluorophore (4-sulfamoyl-7-amino benzoxadiazole) was developed for the fluorescent signal amplified detection of hydrogen peroxide. We also showed that this affinity switchable biotin probe can also be used in blood serum to quantify the glucose concentration.
In the second part, affinity-switchable biotin probe was applied on competitive lateral flow assay (LFA) for the SIGNAL-ON detection of small organic molecules. In the absence of a small molecule, a large steric hindrance was generated which prevents the effective binding of the biotin and streptavidin protein. Therefore, a test line was not observed on the LFA membrane. In the presence of a small molecule target, this steric hindrance is removed, thereby exposing the biotin for streptavidin binding to produce a test line. We demonstrated in this thesis that small molecule sulfonamide drug can be selectively detected using this simple and modular affinity-switchable lateral flow assay (ASLFA).
1. Benton, D.; Owens, D. S.; Parker, P. Y. Blood glucose influences memory and attention in young adults. Neuropsychologia 1994, 32, 595-607
2. Gailliot, M. T.; Baumeister, R. F.; DeWall, C. N.; Maner, J. K.; Plant, E. A.; Tice, D. M.; Brewer, L. E.; Schmeichel, B. J. Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. J.Pers.Soc.Psychol. 2007, 92, 325-336
3. Ferrannini, E. Learning from glycosuria. Diabetes 2011, 60, 695-696
4. Deshpande, A. D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008, 88, 1254-1264
5. Brownrigg, J. R. W.; Schaper, N. C.; Hinchliffe, R. J. Diagnosis and assessment of peripheral arterial disease in the diabetic foot. Diabet. Med. 2015, 32, 738-747
6. Aldhous, P. Race Quickens for Non-Stick Blood Monitoring Technology. Science 1992, 258, 892-893
7. Tamada, J. A.; Bohannon, N. J.; Potts, R. O. Measurement of glucose in diabetic subjects using noninvasive transdermal extraction. Nat. Med. 1995, 1, 1198-1201
8. Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76-100
9. Phypers, B.; Pierce, J. T. Lactate physiology in health and disease. BJA Educ. 2006, 6, 128-132
10. Jeppesen, J. B.; Mortensen, C.; Bendtsen, F.; Møller, S. Lactate metabolism in chronic liver disease. Scand. J. Clin. Lab. Invest. Suppl. 2013, 73, 293-299
11. Azelee, N. I. W.; Ramli, A. N. M.; Manas, N. H. A.; Salamun, N.; Man, R. C.; El Enshasy, H. Glycerol in food, cosmetics and pharmaceutical industries: basics and new applications. Int. J. Sci. Technol. Res 2019, 8, 553-558
12. Christoph, R.; Schmidt, B.; Steinberner, U.; Dilla, W.; Karinen, R. Glycerol. In Ullmann's encycl. ind. chem. 2006.
13. Coats, A. C.; Alford, B. R. Ménière's Disease and the Summating Potential: III. Effect of Glycerol Administration. Arch. Otolaryngol. 1981, 107, 469-473
14. Supuran, C. T. Special Issue: Sulfonamides. Molecules 2017, 22, 1642
15. Tačić, A.; Nikolic, V.; Nikolic, L.; Savic, I. Antimicrobial sulfonamide drugs. Adv. Mater. Technol. 2017, 6, 58-71
16. Capasso, C.; Supuran, C. T. Sulfa and trimethoprim-like drugs – antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J. Enzyme Inhib. Med. Chem. 2014, 29, 379-387
17. Rahman, M. M.; Tikhomirova, A.; Modak, J. K.; Hutton, M. L.; Supuran, C. T.; Roujeinikova, A. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695. Gut Pathog. 2020, 12, 20
18. Caldwell, B.; Aldington, S.; Weatherall, M.; Shirtcliffe, P.; Beasley, R. Risk of cardiovascular events and celecoxib: a systematic review and meta-analysis. J. R. Soc. Med. 2006, 99, 132-140
19. Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K. Rapid Determination of Ractopamine in Swine Urine Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food. Chem. 2011, 59, 10023-10027
20. Alemanno, A.; Capodieci, G. Testing the Limits of Global Food Governance: The Case of Ractopamine. Eur. J. Risk. Regul. 2012, 3, 400-407
21. Abbas, K.; Raza, A.; Vasquez, R. D.; Roldan, M. J. M.; Malhotra, N.; Huang, J.-C.; Buenafe, O. E. M.; Chen, K. H.-C.; Liang, S.-S.; Hsiao, C.-D. Ractopamine at the Center of Decades-Long Scientific and Legal Disputes: A Lesson on Benefits, Safety Issues, and Conflicts. Biomolecules 2022, 12, 1342
22. Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M. C.; Lademann, J.; Schempp, C. M. Reactive Molecule Species and Antioxidative Mechanisms in Normal Skin and Skin Aging. Skin Pharmacol. Physiol. 2014, 27, 316-332
23. Schreck, R.; Rieber, P.; Baeuerle, P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991, 10, 2247-2258
24. Halliwell, B.; Clement, M. V.; Long, L. H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10-13
25. Spencer, J. P. E.; Jenner, A.; Aruoma, O. I.; Cross, C. E.; Wu, R.; Halliwell, B. Oxidative DNA Damage in Human Respiratory Tract Epithelial Cells. Time Course in Relation to DNA Strand Breakage. Biochem. Biophys. Res. Commun. 1996, 224, 17-22
26. Williams, M. D.; Van Remmen, H.; Conrad, C. C.; Huang, T. T.; Epstein, C. J.; Richardson, A. Increased Oxidative Damage Is Correlated to Altered Mitochondrial Function in Heterozygous Manganese Superoxide Dismutase Knockout Mice*. J. Biol. Chem. 1998, 273, 28510-28515
27. Martínez, M. C.; Andriantsitohaina, R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal. 2009, 11, 669-702
28. Patel, R. P.; McAndrew, J.; Sellak, H.; White, C. R.; Jo, H.; Freeman, B. A.; Darley-Usmar, V. M. Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta 1999, 1411, 385-400
29. Pacher, P.; Beckman, J. S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315-424
30. Pacher, P.; Szabo, C. Role of the Peroxynitrite-Poly(ADP-Ribose) Polymerase Pathway in Human Disease. Am. J. Pathol. 2008, 173, 2-13
31. Szabó, C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol. Lett. 2003, 140-141, 105-112
32. Chen, Y.-H.; Chien, W.-C.; Lee, D.-C.; Tan, K.-T. Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal. Chem. 2019, 91, 12461-12467
33. Chung, T.-H.; Wu, Y.-P.; Chew, C. Y.; Lam, C. H.; Tan, K.-T. Imaging and Quantification of Secreted Peroxynitrite at the Cell Surface by a Streptavidin–Biotin-Controlled Binding Probe. ChemBiochem 2018, 19, 2584-2590
34. Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T. Target-activated streptavidin–biotin controlled binding probe. Chem. Sci. 2018, 9, 770-776
35. Oelkers, W. K. H. Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids 1996, 61, 166-171
36. McKee, D. E.; Lalonde, D. H.; Thoma, A.; Dickson, L. Achieving the optimal epinephrine effect in wide awake hand surgery using local anesthesia without a tourniquet. HAND 2015, 10, 613-615
37. Wilson, I. D.; Plumb, R.; Granger, J.; Major, H.; Williams, R.; Lenz, E. M. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B 2005, 817, 67-76
38. Lee, M. S.; Kerns, E. H. LC/MS applications in drug development. Mass Spectrom. Rev. 1999, 18, 187-279
39. Seger, C.; Salzmann, L. After another decade: LC–MS/MS became routine in clinical diagnostics. Clin. Biochem. 2020, 82, 2-11
40. Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A. C.; Alwasel, S. H.; Köksal, E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 2017, 11, 556-566
41. Lai, Y. W.; Lee, Y. T.; Cao, H.; Zhang, H. L.; Chen, B. H. Extraction of heterocyclic amines and polycyclic aromatic hydrocarbons from pork jerky and the effect of flavoring on formation and inhibition. Food Chem. 2023, 402, 134291
42. Hao, C.; Zhao, X.; Yang, P. GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. TrAC, Trends Anal. Chem. 2007, 26, 569-580
43. Tian, F.; Qiao, C.; Luo, J.; Guo, L.; Pang, T.; Pang, R.; Li, J.; Wang, C.; Wang, R.; Xie, H. Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS. Food Chem. 2020, 333, 127468
44. Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4-15
45. Xiong, Y.; Leng, Y.; Li, X.; Huang, X.; Xiong, Y. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. TrAC, Trends Anal. Chem. 2020, 126, 115861
46. Nong, J.-F.; Huang, Z.; Huang, Z.-Z.; Yang, J.; Li, J.-C.; Yang, F.; Huang, D.-L.; Wang, F.; Wang, W. Development of sandwich ELISA and lateral flow assay for the detection of Bungarus multicinctus venom. PLoS. Negl. Trop. Dis .2023, 17, e0011165
47. Yang, F.; Xu, L.; Dias, A. C. P.; Zhang, X. A sensitive sandwich ELISA using a modified biotin-streptavidin amplified system for histamine detection in fish, prawn and crab. Food Chem. 2021, 350, 129196
48. Trabaud, M.-A.; Icard, V.; Milon, M.-P.; Bal, A.; Lina, B.; Escuret, V. Comparison of eight commercial, high-throughput, automated or ELISA assays detecting SARS-CoV-2 IgG or total antibody. J. Clin. Virol. 2020, 132, 104613
49. Shen, C.-J.; Fu, Y.-C.; Lin, Y.-P.; Shen, C.-F.; Sun, D.-J.; Chen, H.-Y.; Cheng, C.-M. Evaluation of Transplacental Antibody Transfer in SARS-CoV-2-Immunized Pregnant Women. Vaccines 2022, 10, 101
50. Park, S.-H.; Kwon, N.; Lee, J.-H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143-179
51. Mochida, A.; Ogata, F.; Nagaya, T.; Choyke, P. L.; Kobayashi, H. Activatable fluorescent probes in fluorescence-guided surgery: Practical considerations. Bioorg. Med. Chem. 2018, 26, 925-930
52. Wu, L.; Sedgwick, A. C.; Sun, X.; Bull, S. D.; He, X.-P.; James, T. D. Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Acc. Chem. Res. 2019, 52, 2582-2597
53. Terai, T.; Nagano, T. Fluorescent probes for bioimaging applications. Curr. Opin. Chem. Biol. 2008, 12, 515-521
54. De Silva, A. P.; Moody, T. S.; Wright, G. D. Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst 2009, 134, 2385-2393
55. Halabi, E. A.; Thiel, Z.; Trapp, N.; Pinotsi, D.; Rivera-Fuentes, P. A Photoactivatable Probe for Super-Resolution Imaging of Enzymatic Activity in Live Cells. J. Am. Chem. Soc. 2017, 139, 13200-13207
56. Sakabe, M.; Asanuma, D.; Kamiya, M.; Iwatate, R. J.; Hanaoka, K.; Terai, T.; Nagano, T.; Urano, Y. Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization. J. Am. Chem. Soc. 2013, 135, 409-414
57. Gao, Z.; Sun, J.; Gao, M.; Yu, F.; Chen, L.; Chen, Q. A unique off-on near-infrared cyanine-based probe for imaging of endogenous alkaline phosphatase activity in cells and in vivo. Sens. Actuators B Chem. 2018, 265, 565-574
58. Zhao, X.; Yang, W.; Fan, S.; Zhou, Y.; Sheng, H.; Cao, Y.; Hu, Y. A hemicyanine-based colorimetric turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. J. Lumin. 2019, 205, 310-317
59. Li, L.; Feng, L.; Zhang, M.; He, X.; Luan, S.; Wang, C.; James, T. D.; Zhang, H.; Huang, H.; Ma, X. Visualization of penicillin G acylase in bacteria and high-throughput screening of natural inhibitors using a ratiometric fluorescent probe. Chem. Commun. (Camb) 2020, 56, 4640-4643
60. de Silva, A. P.; Moody, T. S.; Wright, G. D. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 2009, 134 12, 2385-2393
61. Clegg, R. M. Chapter 1 Förster resonance energy transfer—FRET what is it, why do it, and how it's done. In Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 33; Elsevier, 2009; pp 1-57.
62. Qiao, Y.; Luo, Y.; Long, N.; Xing, Y.; Tu, J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. Micromachines 2021, 12, 492
63. Kaur, A.; Kaur, P.; Ahuja, S. Förster resonance energy transfer (FRET) and applications thereof. Anal. Methods 2020, 12, 5532-5550
64. Qian, J.; Cui, H.; Lu, X.; Wang, C.; An, K.; Hao, N.; Wang, K. Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets. Chem. Eng. J. 2020, 401, 126017
65. Bouchaala, R.; Mercier, L.; Andreiuk, B.; Mély, Y.; Vandamme, T.; Anton, N.; Goetz, J. G.; Klymchenko, A. S. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. J. Controlled Release 2016, 236, 57-67
66. Priem, B.; Tian, C.; Tang, J.; Zhao, Y.; Mulder, W. J. M. Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opin. Drug Deliv. 2015, 12, 1881-1894
67. Zhang, H.; Liu, R.; Tan, Y.; Xie, W. H.; Lei, H.; Cheung, H.-Y.; Sun, H. A FRET-based Ratiometric Fluorescent Probe for Nitroxyl Detection in Living Cells. ACS Appl. Mater. Interfaces 2015, 7, 5438-5443
68. Kawanishi, Y.; Kikuchi, K.; Takakusa, H.; Mizukami, S.; Urano, Y.; Higuchi, T.; Nagano, T. Design and Synthesis of Intramolecular Resonance-Energy Transfer Probes for Use in Ratiometric Measurements in Aqueous Solution. Angew. Chem. Int. Ed. Engl. 2000, 39, 3438-3440
69. Misra, R.; Bhattacharyya, S. Intramolecular Charge Transfer: Theory and Applications; 2018.
70. Chen, X.-K. A Quantum-Chemical Insight into the Role of Charge-Transfer States in Organic Emitters for Electroluminescence. CCS Chem. 2020, 2, 1256-1267
71. Pal, S.; Ying, W.; Alocilja, E. C.; Downes, F. P. Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng. 2008, 99, 461-468
72. Zhao, S.; Xu, M.; Liu, R.; Xue, Y.; Nie, J.; Chang, Y. NIR-II Fluorescent Probe for Detecting Trimethylamine Based on Intermolecular Charge Transfer. Chem. Eur. J. 2022, 28, e202200113
73. Lin, Y.; Sun, J.; Tang, M.; Zhang, G.; Yu, L.; Zhao, X.; Ai, R.; Yu, H.; Shao, B.; He, Y. Synergistic Recognition-Triggered Charge Transfer Enables Rapid Visual Colorimetric Detection of Fentanyl. Anal. Chem. 2021, 93, 6544-6550
74. Wang, S.; Yao, J.; Wang, B.; Liu, X. A ratiometric and two-photon fluorescent probe for imaging hydrogen peroxide in living cells. Luminescence 2022, 37, 1037-1043
75. Anctil, M. Luminous creatures: the history and science of light production in living organisms; McGill-Queen's Press-MQUP, 2018.
76. Walter, E. R. H.; Cooper, S. M.; Boyle, J. J.; Long, N. J. Enzyme-activated probes in optical imaging: a focus on atherosclerosis. Dalton Trans. 2021, 50, 14486-14497
77. Li, S.; Ruan, Z.; Zhang, H.; Xu, H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur. J. Med. Chem. 2021, 211, 113111
78. Gandelman, O. A.; Brovko, L. Y.; Ugarova, N. N.; Chikishev, A. Y.; Shkurimov, A. P. Oxyluciferin fluorescence is a model of native bioluminescence in the firefly luciferin—luciferase system. J. Photochem. Photobiol. B, Biol. 1993, 19, 187-191
79. Li, J.; Chen, L.; Du, L.; Li, M. Cage the firefly luciferin! – a strategy for developing bioluminescent probes. Chem. Soc. Rev. 2013, 42, 662-676
80. White, E. H.; Wörther, H.; Seliger, H. H.; McElroy, W. D. Amino Analogs of Firefly Luciferin and Biological Activity Thereof1. J. Am. Chem. Soc. 1966, 88, 2015-2019
81. Valley, M. P.; Zhou, W.; Hawkins, E. M.; Shultz, J.; Cali, J. J.; Worzella, T.; Bernad, L.; Good, T.; Good, D.; Riss, T. L.; et al. A bioluminescent assay for monoamine oxidase activity. Anal. Biochem. 2006, 359, 238-246
82. Khatkhatay, M. I.; Desai, M. A Comparison of Performances of Four Enzymes Used in Elisa with Special Reference to β-Lactamase. J. Immunoassay. Immunochem. 1999, 20, 151-183
83. Porstmann, T.; Kiessig, S. T. Enzyme immunoassay techniques. An overview. J. Immunol. Methods 1992, 150, 5-21
84. Liu, D.; Perdue, R. K.; Sun, L.; Crooks, R. M. Immobilization of DNA onto Poly(dimethylsiloxane) Surfaces and Application to a Microelectrochemical Enzyme-Amplified DNA Hybridization Assay. Langmuir 2004, 20, 5905-5910
85. Zerbini, M.; Cricca, M.; Gentilomi, G.; Venturoli, S.; Gallinella, G.; Musiani, M. Tyramide signal amplification of biotinylated probe in dot-blot hybridization assay for the detection of parvovirus B19 DNA in serum samples. Clin. Chim. Acta 2000, 302, 79-87
86. Zhou, W.; Andrews, C.; Liu, J.; Shultz, J. W.; Valley, M. P.; Cali, J. J.; Hawkins, E. M.; Klaubert, D. H.; Bulleit, R. F.; Wood, K. V. Self-Cleavable Bioluminogenic Luciferin Phosphates as Alkaline Phosphatase Reporters. ChemBiochem 2008, 9, 714-718
87. Van de Bittner, G. C.; Dubikovskaya, E. A.; Bertozzi, C. R.; Chang, C. J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 21316-21321
88. Nasu, Y.; Campbell, R. E. Unnaturally aglow with a bright inner light. Science 2018, 359, 868-869
89. Binkowski, B.; Fan, F.; Wood, K. Engineered luciferases for molecular sensing in living cells. Curr. Opin. Biotechnol. 2009, 20, 14-18
90. Hall, M. P.; Unch, J.; Binkowski, B. F.; Valley, M. P.; Butler, B. L.; Wood, M. G.; Otto, P.; Zimmerman, K.; Vidugiris, G.; Machleidt, T.; et al. Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. ACS Chem. Biol. 2012, 7, 1848-1857
91. Evans, M. S.; Chaurette, J. P.; Adams, S. T.; Reddy, G. R.; Paley, M. A.; Aronin, N.; Prescher, J. A.; Miller, S. C. A synthetic luciferin improves bioluminescence imaging in live mice. Nat. Methods 2014, 11, 393-395
92. Hutchens, M.; Luker, G. D. Applications of bioluminescence imaging to the study of infectious diseases. Cell. Microbiol. 2007, 9, 2315-2322
93. Iwano, S.; Obata, R.; Miura, C.; Kiyama, M.; Hama, K.; Nakamura, M.; Amano, Y.; Kojima, S.; Hirano, T.; Maki, S.; et al. Development of simple firefly luciferin analogs emitting blue, green, red, and near-infrared biological window light. Tetrahedron 2013, 69, 3847-3856
94. Iwano, S.; Sugiyama, M.; Hama, H.; Watakabe, A.; Hasegawa, N.; Kuchimaru, T.; Tanaka, K. Z.; Takahashi, M.; Ishida, Y.; Hata, J.; et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 2018, 359, 935-939
95. Weber, P. C.; Ohlendorf, D. H.; Wendoloski, J. J.; Salemme, F. R. Structural Origins of High-Affinity Biotin Binding to Streptavidin. Science 1989, 243, 85-88
96. Dundas, C. M.; Demonte, D.; Park, S. Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 2013, 97, 9343-9353
97. Luong, J. H. T.; Male, K. B.; Glennon, J. D. Biotin interference in immunoassays based on biotin-strept(avidin) chemistry: An emerging threat. Biotechnol. Adv. 2019, 37, 634-641
98. Lin, H. J.; Kirsch, J. F. A sensitive fluorometric assay for avidin and biotin. Anal. Biochem. 1977, 81, 442-446
99. Mitchison, T. J.; Sawin, K. E.; Theriot, J. A.; Gee, K.; Mallavarapu, A. [4] Caged fluorescent probes. In Meth. Enzymol. Vol. 291; Academic Press, 1998; pp 63-78.
100. Martens, H. J.; Hansen, M.; Schulz, A. Caged probes: a novel tool in studying symplasmic transport in plant tissues. Protoplasma 2004, 223, 63-66
101. Bae, J.; McNamara, L. E.; Nael, M. A.; Mahdi, F.; Doerksen, R. J.; Bidwell, G. L.; Hammer, N. I.; Jo, S. Nitroreductase-triggered activation of a novel caged fluorescent probe obtained from methylene blue. Chem. Commun. 2015, 51, 12787-12790
102. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chem. Biol. 2011, 18, 1261-1272
103. Zhuang, Y. D.; Chiang, P. Y.; Wang, C. W.; Tan, K. T. Environment-sensitive fluorescent turn-on probes targeting hydrophobic ligand-binding domains for selective protein detection. Angew. Chem. Int. Ed. Engl. 2013, 52, 8124-8128
104. Huang, H.-J.; Lin, Y.-T.; Chung, M.-C.; Chen, Y.-H.; Tan, K.-T. Glucose and Ethanol Detection with an Affinity-Switchable Lateral Flow Assay. Anal. Chem. 2022, 94, 5084-5090
105. Wu, C.-C.; Huang, S.-J.; Fu, T.-Y.; Lin, F.-L.; Wang, X.-Y.; Tan, K.-T. Small-Molecule Modulated Affinity-Tunable Semisynthetic Protein Switches. ACS Sens. 2022, 7, 2691-2700
106. Zhang, Y.; So, M.-k.; Loening, A. M.; Yao, H.; Gambhir, S. S.; Rao, J. HaloTag Protein-Mediated Site-Specific Conjugation of Bioluminescent Proteins to Quantum Dots. Angew. Chem. Int. Ed. 2006, 45, 4936-4940
107. Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.; Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M.; et al. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3, 373-382
108. Marques, S. M.; Slanska, M.; Chmelova, K.; Chaloupkova, R.; Marek, M.; Clark, S.; Damborsky, J.; Kool, E. T.; Bednar, D.; Prokop, Z. Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling. JACS Au 2022, 2, 1324-1337
109. Baran, W.; Adamek, E.; Ziemiańska, J.; Sobczak, A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011, 196, 1-15
110. 莊鈺德. 可選擇性的進行蛋白質與磺胺類藥物檢測之 對環境敏感螢光探針. 國立清華大學碩士論文
111. 賴琬儀. 籠閉生物素及環境敏感螢光染料在生物感測上的應用. 國立清華大學碩士論文