簡易檢索 / 詳目顯示

研究生: 劉茗涵
Liou, Ming-Han
論文名稱: 探討IGFBP-2在具轉移能力之口腔癌細胞中所扮演的角色
The Role of IGFBP-2 in Oral Cancer Metastasis
指導教授: 詹鴻霖
Chan, Hong-Lin
口試委員: 高承源
Kao, Cheng-Yuan
周秀專
Chou, Hsiu-Chuan
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 轉移口腔癌癌症胰島素樣生長因子結合蛋白胰島素樣生長因子上皮間質轉變
外文關鍵詞: Oral, IGFBP-2
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在台灣,癌症一直是十大死因排行第一名,衛生福利部統計2017年,口腔癌為十大癌症死因順序第五名,並逐漸上升。然而在全球調查中,六成七的患者就醫時已是口腔癌晚期,已轉移的患者比起未轉移的患者,五年存活率下降三成左右,故了解口腔癌轉移機制,找尋相關的生物標記物,對於治療口腔癌有相當的幫助。
      本研究以口腔鱗狀上皮癌細胞OC3以及同樣基因背景且具高侵襲能力之細胞OC3-I5,探討實驗室先前利用分泌蛋白學分析法,選出可能影響口腔癌細胞轉移能力的候選分泌蛋白insulin-like growth factor-binding protein 2 (IGFBP-2),然而目前IGFBP-2如何調控口腔癌細胞尚待釐清。故藉由siRNA基因靜默技術(siRNA knockdown)將IGFBP-2表現量下降,也利用額外加入重組蛋白(Recombinant protein) 技術,模擬IGFBP-2在細胞外影響細胞內的環境條件,藉以提高IGFBP-2的表達,由上述兩者技術,以功能性測試實驗觀察口腔癌細胞移動、侵襲以及增殖能力。研究發現,當處理siIGFBP-2蛋白表現後會限制口腔癌細胞移動、侵襲以及增殖的能力,若外加重組蛋白IGFBP-2,情況則反之,在信息傳遞上,確認IGFBP-2在口腔癌細胞中參與mTOR路徑,並探討對於IGFBP-2和實驗室另一與口腔癌轉移相關候選分泌蛋白urokinase-type plasminogen activator (uPA)的相互關係,發現IGFBP-2可能位於uPA信息傳遞之上游,並發現外加重組蛋白uPA後,經功能性實驗測試可提升口腔癌細胞移動、侵襲以及增殖能力。得知IGFBP-2可有效影響口腔癌的進程,期盼成為具潛力之口腔癌生物標記物。


    According to Taiwan’s Ministry of Health and Welfare Statistics in 2017, oral cancer is the 5th leading cause of death in cancer. Approximately six in seven of oral cancer patients presented with advanced stage disease. Therefore, cancer metastasis is one of the issues in current cancer treatment. In order to manage oral cancer progression, identification of oral cancer biomarker and oncogenic mechanism is one of the critical concerns. In our study, we used a pair of oral squamous cell carcinoma lines, OC3 and invasive OC3-I5 to simulate the early state of oral cancer metastasis. Insulin-like growth factor-binding protein 2 (IGFBP-2), a potential biomarker previously identified in our lab, was reported participating in cancer metastasis. But the detailed roles of IGFBP-2 in oral cancer need to be further confirmed. In combination with siRNA, we found knockdown of IGFBP-2 significantly decreased cell invasion and migration ability. In addition, IGFBP-2 recombinant proteins were applied and we found treatment of recombinant protein elevating cell migration, invasion and proliferation ability. Further, our preliminary result demonstrated that IGFBP-2 might not only involved in invasion mechanism but also be a crucial element in signaling mTOR pathways in oral cancer. Moreover, IGFBP-2 might be upstream factor of urokinase-type plasminogen activator (uPA) and uPA is one of potential therapeutic candidates that was found previously in or laboratory. To sum up, our results showed that IGFBP-2 were involved in oral cancer metastasis and may serve as potential therapeutic targets.

    目錄 2 中文摘要 4 英文摘要 5 縮寫 7 探討IGFBP-2在具轉移能力之口腔癌細胞中所扮演的角色 9 壹、 文獻回顧 10 1-1 口腔癌 10 1-2 口腔癌的相關危險因子 10 1-3 口腔癌的各項統計數據 10 1-4 轉移與侵襲 14 1-5 口腔癌的分期 15 1-6 口腔癌的轉移與致死率 17 1-7 分泌蛋白質體(secretome) 19 1-8 藉由二維差異電泳分析口腔癌中的生物標記 20 1-9 胰島素樣生長因子結合蛋白2 (Insulin-Like Growth Factor-Binding Protein 2, IGFBP-2) 23 1-10 研究目的 25 貳、 材料與方法 27 2-1藥品與材料 27 2-2細胞株與細胞培養 28 2-2.1細胞株培養與繼代方法 28 2-2.2 Transwell細胞侵襲實驗(cell invasion assay)篩選細胞 29 2-3西方墨點法(western blotting) 29 2-4 siRNA knockdown沉默候選蛋白質(candidate protein)基因 31 2-5 功能性實驗(In vitro functional assays) 32 2-5.1 細胞增殖實驗(proliferation assay) 32 2-5.2 Transwell細胞移動與侵襲實驗(cell migration and invasion assay) 33 2-5.3 傷口癒合實驗(Scratch wound healing assay) 34 參、 實驗結果 35 3-1 OC3與OC3-I5在移動與侵襲能力上的差異 35 3-1.1以transwell migration/invasion assay比較OC3與OC3-I5細胞移動與侵襲的差異 35 3-1.2以西方墨點法檢測EMT生物標記物在OC3與OC3-I5細胞中表現的差異 37 3-2 siRNA基因靜默(siRNA knockdown)IGFBP-2對於人類口腔癌的影響 38 3-2.1siRNA基因靜默IGFBP-2效率確認 38 3-2.2處理siIGFBP-2後對人類口腔癌細胞移動與侵襲能力的影響 41 3-2.3處理siIGFBP-2後對人類口腔癌細胞傷口癒合能力的影響 43 3-2.4處理siIGFBP-2後對人類口腔癌細胞轉移相關的生物標記物的影響 45 3-3 外加重組蛋白(Recombinant protein)IGFBP-2對於人類口腔癌的影響 46 3-3.1外加重組蛋白IGFBP-2對於人類口腔癌細胞侵襲與移動能力的影響 47 3-3.2外加重組蛋白IGFBP-2對於人類口腔癌細胞傷口癒合能力的影響 49 3-3.3外加重組蛋白IGFBP-2對於人類口腔癌細胞增殖能力的影響 52 3-3.4外加重組蛋白IGFBP-2對於人類口腔癌細胞轉移相關的生物標記物的影響 54 3-4 探討IGFBP-2與uPA之間的相互關係 55 3-4.1探討siIGFBP-2處理對於uPA、PI3K/Akt/mTOR路徑的影響 58 3-4.2探討外加重組蛋白IGFBP-2對於uPA、PI3K/Akt/mTOR路徑的影響 59 3-5 外加重組蛋白(Recombinant protein)uPA對於人類口腔癌的影響 61 3-5.1外加重組蛋白uPA對於人類口腔癌細胞侵襲與移動能力的影響 62 3-5.2外加重組蛋白uPA對於人類口腔癌細胞傷口癒合能力的影響 64 3-5.3外加重組蛋白uPA對於人類口腔癌細胞增殖能力的影響 67 肆、 討論 69 伍、 結論 75 陸、 參考資料 77

    1. Ghantous, Y., V. Yaffi, and I. Abu-Elnaaj, [Oral cavity cancer: epidemiology and early diagnosis]. Refuat Hapeh Vehashinayim (1993), 2015. 32(3): p. 55-63, 71.
    2. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3.
    3. Chen, Y.K., et al., Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol, 1999. 35(2): p. 173-9.
    4. Rosenquist, K., Risk factors in oral and oropharyngeal squamous cell carcinoma: a population-based case-control study in southern Sweden. Swed Dent J Suppl, 2005(179): p. 1-66.
    5. Mathur, R., et al., Role of Poor Oral Hygiene in Causation of Oral Cancer-a Review of Literature. Indian J Surg Oncol, 2019. 10(1): p. 184-195.
    6. Chou, C.L., C.J. Tseng, and Y.L. Shiue, The impact of young age on the prognosis for colorectal cancer: a population-based study in Taiwan. Jpn J Clin Oncol, 2017. 47(11): p. 1010-1018.
    7. Valastyan, S. and R.A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011. 147(2): p. 275-92.
    8. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95.
    9. Wheelock, M.J., et al., Cadherin switching. J Cell Sci, 2008. 121(Pt 6): p. 727-35.
    10. Acloque, H., et al., Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest, 2009. 119(6): p. 1438-49.
    11. Das, V., et al., The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol, 2019.
    12. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 2008. 14(6): p. 818-29.
    13. Yang, Q. and X. Li, Molecular Network Basis of Invasive Pituitary Adenoma: A Review. Front Endocrinol (Lausanne), 2019. 10: p. 7.
    14. Nguyen, H.L., et al., MT1-MMP Activation of TGF-beta Signaling Enables Intercellular Activation of an Epithelial-mesenchymal Transition Program in Cancer. Curr Cancer Drug Targets, 2016. 16(7): p. 618-30.
    15. Sorsa, T., L. Tjaderhane, and T. Salo, Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis, 2004. 10(6): p. 311-8.
    16. Tang, H., et al., Pathological and therapeutic aspects of matrix metalloproteinases: Implications in osteosarcoma. Asia Pac J Clin Oncol, 2019.
    17. Simabuco, F.M., et al., p53 and metabolism: from mechanism to therapeutics. Oncotarget, 2018. 9(34): p. 23780-23823.
    18. Ansieau, S., et al., Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 2008. 14(1): p. 79-89.
    19. Smit, M.A. and D.S. Peeper, Deregulating EMT and senescence: double impact by a single twist. Cancer Cell, 2008. 14(1): p. 5-7.
    20. Beltz, A., et al., [Staging of oropharyngeal carcinomas : New TNM classification as a challenge for head and neck cancer centers]. HNO, 2018. 66(5): p. 375-382.
    21. Huang, S.H. and B. O'Sullivan, Overview of the 8th Edition TNM Classification for Head and Neck Cancer. Curr Treat Options Oncol, 2017. 18(7): p. 40.
    22. Kao, S.Y. and E. Lim, An overview of detection and screening of oral cancer in Taiwan. Chin J Dent Res, 2015. 18(1): p. 7-12.
    23. Tjalsma, H., et al., Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev, 2000. 64(3): p. 515-47.
    24. Kulasingam, V. and E.P. Diamandis, Tissue culture-based breast cancer biomarker discovery platform. Int J Cancer, 2008. 123(9): p. 2007-12.
    25. Feizi, A., A. Banaei-Esfahani, and J. Nielsen, HCSD: the human cancer secretome database. Database (Oxford), 2015. 2015: p. bav051.
    26. Karagiannis, G.S., M.P. Pavlou, and E.P. Diamandis, Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol, 2010. 4(6): p. 496-510.
    27. Celis, J.E., et al., Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics, 2005. 4(4): p. 492-522.
    28. Caccia, D., et al., Bioinformatics tools for secretome analysis. Biochim Biophys Acta, 2013. 1834(11): p. 2442-53.
    29. Emmerson, E., et al., Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERalpha cross talk. J Invest Dermatol, 2012. 132(12): p. 2838-48.
    30. Liu, J.P., et al., Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell, 1993. 75(1): p. 59-72.
    31. Lioutas, V.A., et al., Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res, 2015. 6(4): p. 264-75.
    32. Taguchi, A. and M.F. White, Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol, 2008. 70: p. 191-212.
    33. Rajpathak, S.N., et al., The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab Res Rev, 2009. 25(1): p. 3-12.
    34. Allard, J.B. and C. Duan, IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front Endocrinol (Lausanne), 2018. 9: p. 117.
    35. Baxter, R.C., Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab, 2000. 278(6): p. E967-76.
    36. Clemmons, D.R., IGF binding proteins and their functions. Mol Reprod Dev, 1993. 35(4): p. 368-74; discussion 374-5.
    37. Jones, J.I. and D.R. Clemmons, Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev, 1995. 16(1): p. 3-34.
    38. Firth, S.M. and R.C. Baxter, Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev, 2002. 23(6): p. 824-54.
    39. Kiepe, D., et al., Differential effects of insulin-like growth factor binding proteins-1, -2, -3, and -6 on cultured growth plate chondrocytes. Kidney Int, 2002. 62(5): p. 1591-600.
    40. Hoeflich, A., et al., Insulin-like growth factor-binding protein 2 in tumorigenesis: protector or promoter? Cancer Res, 2001. 61(24): p. 8601-10.
    41. Godard, S., et al., Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res, 2003. 63(20): p. 6613-25.
    42. Wang, G.K., et al., An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin alpha5 is essential for IGFBP2-induced cell mobility. J Biol Chem, 2006. 281(20): p. 14085-91.
    43. Wang, H., et al., Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res, 2003. 63(15): p. 4315-21.
    44. Han, S., et al., Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin beta1-ERK pathway. Br J Cancer, 2014. 111(7): p. 1400-9.
    45. Du, Y. and P. Wang, Upregulation of MIIP regulates human breast cancer proliferation, invasion and migration by mediated by IGFBP2. Pathol Res Pract, 2019: p. 152440.
    46. Shen, F., et al., IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Res, 2019. 1704: p. 174-186.
    47. Dokmanovic, M., et al., Trastuzumab regulates IGFBP-2 and IGFBP-3 to mediate growth inhibition: implications for the development of predictive biomarkers for trastuzumab resistance. Mol Cancer Ther, 2011. 10(6): p. 917-28.
    48. Juncker-Jensen, A., et al., Insulin-like growth factor binding protein 2 is a marker for antiestrogen resistant human breast cancer cell lines but is not a major growth regulator. Growth Horm IGF Res, 2006. 16(4): p. 224-39.
    49. Sehgal, P., et al., Regulation of protumorigenic pathways by insulin like growth factor binding protein2 and its association along with beta-catenin in breast cancer lymph node metastasis. Mol Cancer, 2013. 12: p. 63.
    50. Hu, Q., et al., Is insulin-like growth factor binding protein 2 associated with metastasis in lung cancer? Clin Exp Metastasis, 2014. 31(5): p. 535-41.
    51. Lu, H., et al., IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small cell lung cancer cells. Mol Cancer Ther, 2013. 12(12): p. 2864-73.
    52. Migita, T., et al., Role of insulin-like growth factor binding protein 2 in lung adenocarcinoma: IGF-independent antiapoptotic effect via caspase-3. Am J Pathol, 2010. 176(4): p. 1756-66.
    53. Chesik, D., J. De Keyser, and N. Wilczak, Insulin-like growth factor binding protein-2 as a regulator of IGF actions in CNS: implications in multiple sclerosis. Cytokine Growth Factor Rev, 2007. 18(3-4): p. 267-78.
    54. Lane, E.M., et al., Insulin-like growth factor binding protein-2 interactions with Alzheimer's disease biomarkers. Brain Imaging Behav, 2017. 11(6): p. 1779-1786.
    55. Mendes, K.N., et al., JNK mediates insulin-like growth factor binding protein 2/integrin alpha5-dependent glioma cell migration. Int J Oncol, 2010. 37(1): p. 143-53.
    56. Gao, S., et al., IGFBP2 Activates the NF-kappaB Pathway to Drive Epithelial-Mesenchymal Transition and Invasive Character in Pancreatic Ductal Adenocarcinoma. Cancer Res, 2016. 76(22): p. 6543-6554.
    57. Wilhelm, F., et al., Phosphatidylinositol 3-kinase (PI3K) signalling regulates insulin-like-growth factor binding protein-2 (IGFBP-2) production in human adipocytes. Growth Horm IGF Res, 2015. 25(3): p. 115-20.
    58. Levitt, R.J., M.M. Georgescu, and M. Pollak, PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2. Biochem Biophys Res Commun, 2005. 336(4): p. 1056-61.
    59. Mireuta, M., A. Darnel, and M. Pollak, IGFBP-2 expression in MCF-7 cells is regulated by the PI3K/AKT/mTOR pathway through Sp1-induced increase in transcription. Growth Factors, 2010. 28(4): p. 243-55.
    60. Li, Z., et al., Insulin stimulates IGFBP-2 expression in 3T3-L1 adipocytes through the PI3K/mTOR pathway. Mol Cell Endocrinol, 2012. 358(1): p. 63-8.
    61. Aaltonen, K.E., et al., Association between insulin-like growth factor-1 receptor (IGF1R) negativity and poor prognosis in a cohort of women with primary breast cancer. BMC Cancer, 2014. 14: p. 794.
    62. Kato, Y., et al., Gene expression pattern in oral cancer cervical lymph node metastasis. Oncol Rep, 2006. 16(5): p. 1009-14.
    63. Otero-Rey, E., et al., DNA microarrays in oral cancer. Med Oral, 2004. 9(4): p. 288-92.
    64. Warner, G.C., et al., Molecular classification of oral cancer by cDNA microarrays identifies overexpressed genes correlated with nodal metastasis. Int J Cancer, 2004. 110(6): p. 857-68.
    65. O'Donnell, R.K., et al., Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene, 2005. 24(7): p. 1244-51.
    66. Ye, H., et al., Proteomic based identification of manganese superoxide dismutase 2 (SOD2) as a metastasis marker for oral squamous cell carcinoma. Cancer Genomics Proteomics, 2008. 5(2): p. 85-94.
    67. Tseng, M.Y., et al., Serine protease inhibitor (SERPIN) B1 promotes oral cancer cell motility and is over-expressed in invasive oral squamous cell carcinoma. Oral Oncol, 2009. 45(9): p. 771-6.
    68. Chang, K.P., et al., Overexpression of caldesmon is associated with lymph node metastasis and poorer prognosis in patients with oral cavity squamous cell carcinoma. Cancer, 2013. 119(22): p. 4003-11.
    69. Zhang, X., et al., Systematic analysis of genes involved in oral cancer metastasis to lymph nodes. Cell Mol Biol Lett, 2018. 23: p. 53.
    70. Shieh, T.M., et al., Association of expression aberrances and genetic polymorphisms of lysyl oxidase with areca-associated oral tumorigenesis. Clin Cancer Res, 2007. 13(15 Pt 1): p. 4378-85.
    71. Okumura, K., et al., Establishment of high- and low-invasion clones derived for a human tongue squamous-cell carcinoma cell line SAS. J Cancer Res Clin Oncol, 1996. 122(4): p. 243-8.
    72. Lin, C.W., et al., Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One, 2013. 8(11): p. e80883.
    73. Rangan, S.R., A new human cell line (FaDu) from a hypopharyngeal carcinoma. Cancer, 1972. 29(1): p. 117-21.
    74. Lin, S.C., et al., Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med, 2004. 33(2): p. 79-86.
    75. Lu, Y.C., et al., Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev Res (Phila), 2012. 5(4): p. 665-74.
    76. Marshall, J., Transwell((R)) invasion assays. Methods Mol Biol, 2011. 769: p. 97-110.
    77. Cory, G., Scratch-wound assay. Methods Mol Biol, 2011. 769: p. 25-30.
    78. Mayer, I.A. and C.L. Arteaga, The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu Rev Med, 2016. 67: p. 11-28.
    79. Ersahin, T., N. Tuncbag, and R. Cetin-Atalay, The PI3K/AKT/mTOR interactive pathway. Mol Biosyst, 2015. 11(7): p. 1946-54.
    80. Li, X., et al., PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016. 7(22): p. 33440-50.
    81. Gasparri, M.L., et al., PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd, 2017. 77(10): p. 1095-1103.
    82. Sun, Z., et al., New development of inhibitors targeting the PI3K/AKT/mTOR pathway in personalized treatment of non-small-cell lung cancer. Anticancer Drugs, 2015. 26(1): p. 1-14.
    83. Slomovitz, B.M. and R.L. Coleman, The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res, 2012. 18(21): p. 5856-64.
    84. Murugan, A.K., A.K. Munirajan, and N. Tsuchida, Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett, 2013. 338(2): p. 193-203.
    85. Miyahara, L.A.N., et al., PTEN allelic loss is an important mechanism in the late stage of development of oral leucoplakia into oral squamous cell carcinoma. Histopathology, 2018. 72(2): p. 330-338.
    86. Zeng, L., C.M. Perks, and J.M. Holly, IGFBP-2/PTEN: A critical interaction for tumours and for general physiology? Growth Horm IGF Res, 2015. 25(3): p. 103-7.
    87. Hoeflich, A. and V.C. Russo, Physiology and pathophysiology of IGFBP-1 and IGFBP-2 - consensus and dissent on metabolic control and malignant potential. Best Pract Res Clin Endocrinol Metab, 2015. 29(5): p. 685-700.
    88. Lin, J.J., et al., 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways. Mar Drugs, 2014. 12(9): p. 4783-98.
    89. Tang, J., et al., cRGD inhibits vasculogenic mimicry formation by down-regulating uPA expression and reducing EMT in ovarian cancer. Oncotarget, 2016. 7(17): p. 24050-62.
    90. Stepanova, V., et al., Urokinase-type plasminogen activator (uPA) is critical for progression of tuberous sclerosis complex 2 (TSC2)-deficient tumors. J Biol Chem, 2017. 292(50): p. 20528-20543.
    91. Andreasen, P.A., et al., The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer, 1997. 72(1): p. 1-22.
    92. Carmeliet, P., et al., Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet, 1997. 17(4): p. 439-44.
    93. Kugaevskaya, E.V., et al., [The urokinase-type plasminogen activator system and its role in tumor progression]. Biomed Khim, 2018. 64(6): p. 472-486.
    94. Santibanez, J.F., Urokinase Type Plasminogen Activator and the Molecular Mechanisms of its Regulation in Cancer. Protein Pept Lett, 2017. 24(10): p. 936-946.
    95. Ding, Y., et al., Effect of urokinase-type plasminogen activator system in gastric cancer with peritoneal metastasis. Oncol Lett, 2016. 11(6): p. 4208-4216.
    96. Su, S.C., et al., The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets, 2016. 20(5): p. 551-66.
    97. Madunic, J., The Urokinase Plasminogen Activator System in Human Cancers: An Overview of Its Prognostic and Predictive Role. Thromb Haemost, 2018. 118(12): p. 2020-2036.
    98. Mahmood, N., C. Mihalcioiu, and S.A. Rabbani, Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front Oncol, 2018. 8: p. 24.
    99. Nagamine, Y., R.L. Medcalf, and P. Munoz-Canoves, Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost, 2005. 93(4): p. 661-75.
    100. Li, W.D., et al., Autophagy inhibits endothelial progenitor cells migration via the regulation of MMP2, MMP9 and uPA under normoxia condition. Biochem Biophys Res Commun, 2015. 466(3): p. 376-80.
    101. Hua, H., Y. Zhu, and Y.H. Song, Ruscogenin suppressed the hepatocellular carcinoma metastasis via PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother, 2018. 101: p. 115-122.
    102. Laurenzana, A., et al., uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells. Int J Cancer, 2017. 141(6): p. 1190-1200.
    103. Tian, B., et al., Urokinase plasminogen activator secreted by cancer-associated fibroblasts induces tumor progression via PI3K/AKT and ERK signaling in esophageal squamous cell carcinoma. Oncotarget, 2017. 8(26): p. 42300-42313.
    104. Okada, Y., et al., An analysis of cervical lymph nodes metastasis in oral squamous cell carcinoma. Relationship between grade of histopathological malignancy and lymph nodes metastasis. Int J Oral Maxillofac Surg, 2003. 32(3): p. 284-8.
    105. Pollaers, K., et al., AJCC 8th Edition oral cavity squamous cell carcinoma staging - Is it an improvement on the AJCC 7th Edition? Oral Oncol, 2018. 82: p. 23-28.
    106. Matos, L.L., et al., External validation of the AJCC Cancer Staging Manual, 8th edition, in an independent cohort of oral cancer patients. Oral Oncol, 2017. 71: p. 47-53.
    107. Tsuda, M. and Y. Ohba, Functional Biomarkers of Oral Cancer. Oral Cancer, Dr. Kalu U. E. Ogbureke (Ed.), 2012: p. 277-294.
    108. Laimer, K., et al., High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: A TMA-based immunohistochemical analysis. Oral Oncology, 2007. 43(2): p. 193-198.
    109. Lim, J., et al., Prognostic value of activated Akt expression in oral squamous cell carcinoma. J Clin Pathol, 2005. 58(11): p. 1199-205.
    110. Chiang, C.P., et al., Expression of p53 protein in oral submucous fibrosis, oral epithelial hyperkeratosis, and oral epithelial dysplasia. J Formos Med Assoc, 2000. 99(3): p. 229-34.
    111. Qian, J., et al., Hypoxia inducible factor: a potential prognostic biomarker in oral squamous cell carcinoma. Tumour Biol, 2016. 37(8): p. 10815-20.
    112. Kademani, D., et al., Angiogenesis and CD34 expression as a predictor of recurrence in oral squamous cell carcinoma. J Oral Maxillofac Surg, 2009. 67(9): p. 1800-5.
    113. Lyons, A.J. and J. Jones, Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg, 2007. 36(8): p. 671-9.
    114. Wang, Z., et al., Modulation on gallbladder carcinoma by TGF-beta1 via IGFBP-2. Cancer Biomark, 2018.
    115. Russo, V.C., et al., IGFBP-2: The dark horse in metabolism and cancer. Cytokine Growth Factor Rev, 2015. 26(3): p. 329-46.
    116. Azar, W.J., et al., IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells. Endocrinology, 2011. 152(9): p. 3332-42.
    117. Patil, S.S., et al., Novel anti IGFBP2 single chain variable fragment inhibits glioma cell migration and invasion. J Neurooncol, 2015. 123(2): p. 225-35.
    118. Giudice, L.C., et al., Insulin-like growth factor binding proteins in human endometrium: steroid-dependent messenger ribonucleic acid expression and protein synthesis. J Clin Endocrinol Metab, 1991. 72(4): p. 779-87.
    119. Hettmer, S., et al., Effects of insulin-like growth factors and insulin-like growth factor binding protein-2 on the in vitro proliferation of peripheral blood mononuclear cells. Hum Immunol, 2005. 66(2): p. 95-103.

    QR CODE