研究生: |
沈欣怡 Shen, Shin-Yi |
---|---|
論文名稱: |
利用週期性極化反轉結構產生高階和頻諧波 Generation of high order harmonics by sum frequency mixing in periodically poled structure |
指導教授: |
孔慶昌
Kung, A. H. |
口試委員: |
謝智明
林碩泰 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 非線性 、週期性極化反轉 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究重點為利用模擬來設計週期性極化反轉鉭酸鋰多段式晶體,期望達成多個諧波同時輸出,拓展現有的多諧波輸出技術,增寬頻譜範圍使脈衝壓縮的更短。配合合成波形技術,達到次飛秒的超短脈衝光源,更加接近有效觀察及控制電子運動的目標。本篇論文主要分為光參振盪器及準相位匹配之理論介紹、模擬和設計非線性晶體、製出晶體之量測結果與分析,在論文最後附上可程式化全光譜雷射波長轉換系統的晶體效率量測。
理論部分介紹非線性頻率轉換、光參振盪器及準相位匹配。晶體設計與量測部分,介紹了晶體各段週期的計算,接著藉由一種特殊型式週期分佈的非線性晶體實際量測晶體週期,決定多段式晶體週期的佈局,再由程式模擬出有最佳轉換效率輸出的長度搭配,成功配製出一多段式晶體可以同時達到七個準相位匹配的諧波輸出。最後附件為量測和頻與差頻晶體的轉換效率,協助龍彩科技股份有限公司開發可程式化全光譜雷射波長轉換系統,然而差頻晶體的量測以超過1%的轉換效率突破文獻所達最高轉換效率。
This research focuses on simulating and designing a chip with periodic poled congruent grown lithium tantalite to achieve the goal of multiple harmonics generation simultaneously so as to expand the range of spectrum of the laser wavelength. With the technique of waveform synthesis, this chip will allow us to obtain ultrashort subfemtosecond pulses. It will make the ultimate goal of controlling electronic motion closer to reality. The thesis includes a short summary of the theory of optical parametric oscillator (OPO) and quasi-phase matching (QPM), simulation and design of the nonlinear crystal, measurement results and analysis. At last, there is an attachment about the conversion efficiency measurements of crystals designed for a programmable full-spectrum laser wavelength conversion system.
In the first part, we introduce frequency conversion, OPO and QPM. In the part of measurement and design, we calculate the phase-matched periods, test the fan-out chips and simulate conversion efficiencies to decide on the periods and lengths of every section on a QPM chip that can be sued for multiple harmonics generation. We successfully designed and fabricated a chip that can generate seven harmonics. In the last part, we describe the measurement of the conversion efficiencies of sum frequency generation (SFG) and difference frequency generation (DFG) of a CW fiber laser and a 1550 nm laser diode for the purpose of building a programmable tunable laser source. The conversion efficiency of DFG is 1.21% which is higher than any reported in the literature.
[1] T. H. Maiman, "Stimulated Optical Emission in Ruby," Journal of the Optical Society of America, Vol. 50, pp. 1134-1134, 1960.
[2] P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, "Generation of Optical Harmonics," Physical Review Letters, Vol. 7, pp. 118-119, 1961.
[3] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Physical Review, Vol. 127, pp. 1918-1939, 1962.
[4] P. A. Franken and J. F. ward, "Optical harmonics and nonlinear phenomena," Rev. Mod. Phys 35, 23, 1963.
[5] J. Ng, A. H. Kung, A. Miklos, P. Hess, "Sensitive wavelength-modulated photoacoustic spectroscopy with a pulsed optical parametric oscillator," Opt. Lett. 29, 1206-1208, 2004.
[6] M. M. Fejer, G. A. Mahel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched harmonic generation: tuning and tolerances," IEEE J. Quantum Electron., Vol. 28, pp. 2631-2654, 1992.
[7] V. Berger, "Nonlinear photonic crystals," Physical Review Letters, Vol. 81, pp. 4136-4139, 1998.
[8] W. C. Hsu, Y. Y. Lai, C. J. Lai, L. H. Peng, C. L. Pan, and A. H. Kung, "Generation of multi-octave-spanning laser harmonics by cascaded quasi-phase matching in a monolithic ferroelectric crystal," Opt. Lett Vol. 34, No. 22, 2009.
[9] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett 22,1834, 1997.
[10] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B. 12, 2102, 1995.
[11] J. P. Meyn and M. M. Fejer, "Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite," Opt. Lett 22, 1214, 1997.
[12] A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, and E. Lebiush, "Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP," Opt. Lett 22, 1214, 1997.
[13] K. Kitamura, J.K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, "Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," Journal of Crystal Growth, Vol. 116, pp. 327, 1992.
[14] O. Gayer, Z. Sacks, E. Galun, A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B 91, 343–348, 2008.
[15] T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, K. Kitamara, "Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO 3," Opt. Lett. Vol. 25 Issue 9, 651-653, 2000.
[16] Konstantinos Moutzouris, George Hloupis, Ilias Stavrakas, Dimos Triantis and Ming-Hsien Chou, "Temperature-dependent visible to near-infrared optical properties of 8 mol% Mg-doped lithium tantalate," Optical Materials Express, Vol. 1, No. 3, 2011.
[17] Y. S. Kim and R. T. Smith, "Thermal expansion of lithium tantalate and lithium niobate crystals," J. Appl. Phys. 40(11), 4637–4641, 1969.
[18] G.D.Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639, 1968.
[19] H. H. Abu-Safe, "Difference frequency mixing of strongly focused Gaussian beams in periodically poled LiNbO3," Appl. Phys. Lett. 86, 231105, 2005.
[20] I. Galli, G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, and P. De Natale, "Powerful CW mid-IR source based on intra-cavity difference-frequency generation," International Conference on Space Optics (ICSO 2008) Toulouse, France, 2008.
[21] V.L. Kasyutich, R.J. Holdsworth, P.A. Martin, "Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO," Applied Physics B. 92: 271-279, 2008.
[22] T. Topfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, and F. K. Tittel, "Room temperature mid-infrared laser sensor for trace gas detection." Applied Optics, Optical Society of America, vol. 36, No. 30, pp. 8042-8049, 1997.
[23] 胡益寧, "短腔光學參量振盪器與藍光產生器之研究," 國立台灣大學光電工程學研究所碩士論文, 2008.
[24] 裴善裝, "週期性極化反轉鐵電材料之製備與特性檢測," 國立台灣大學光電工程學研究所博士論文, 2011.