研究生: |
曾彥霖 Tseng, Yen-Ling |
---|---|
論文名稱: |
具鉬鎢為主高功函數金屬閘極之金氧半元件製程研究 Process Study for MOS Devices with Molybdenum and Tungsten Based High Work Function Metal Gates |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 高功函數 、鉬 、鎢 、金屬閘極 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了改善MOSFET電晶體的性能,元件的尺寸被要求越來越小,許多新穎的研究成果已被發表出來,其中,高功函數金屬閘極的研究相當引人注目。
本論文研究的重點放在高功函數金屬閘極的材料選擇上。第一部分為研究兩種以MoN為主搭配TiN薄膜的閘極堆疊結構搭配high-k介電層材料 HfAlO,其中TM_H (TiN/MoN) 閘極在經過高溫退火之後,閘極金屬的擴散並不明顯,故其在可靠性上的表現特別優良。第二部分為探討新的單層金屬閘極WN,並整合在介電層分別為SiO2和ALD沉積的high-k介電層上,單層WN閘極不論在電性上和還是熱穩定性上的表現均較單層MoN來的好,WN_S(WN_SiO2) 閘極在經過高溫退火之後,閘極金屬的擴散並不明顯,故其在可靠性上的表現特別優良。整體來說單層WN閘極有良好的電特性相較於單層MoN金屬閘極元件。而在功函數的熱穩定性上,WN閘極的熱穩定性經過高溫退火後仍保有其高功函數的特性,皆擁有還不錯的功函數熱穩定性,雖然高溫後有有所下降,但皆仍高於5.0 Ev所以適合於pMOS元件的應用。
第三部分的討論中我們承接第二部分的結論,而且為了想要獲得更佳品質的金屬閘極條件,我們加入了Hf,使之成為合金WxHfN合金式金屬閘極,發現以WHfN合金當作閘電極所形成的元件具有極佳的電特性和熱穩定性,最主要是因為此條件下的金屬離子具有最輕微的擴散深度且擴散的情形較不受PMA溫度影響。最後,在第四部分繼續延續上一部份WHfN合金當作閘電極,本章主要討論WHfN金屬閘極搭配high-k介電層,希望找出最合適的合金式金屬閘極、以及high-k介電層結構,得知WHf50_H(W:50w)合金式金屬閘極搭配 HfO2/HfAlO 堆疊式介電層,可以達到最佳化的高功函數metal gate/high-k dielectric金氧半元件。
[1] M. S. Krishinan, et al., IEDM, p. 571, 1998
[2] C. Hobbs, et al., IEEE Symp. On VLSI Technology Tech. Dig., 2-1. 2003.
[3] C. Hobbs, et al., IEEE Elec. Dev. Lett., vol.51(6), pp.978, 2004.
[4] Seiichiro KAWAMURA, IEEE Custom Integrated Circuits Conference, p.467-474, 2002.
[5] D. G. Park, et al., IEDM Tech. Dig., p.671, 2001.
[6] H. Zhong, et al., Appl. Phys. Lett., vol.78, p.1134-1136, 2001.
[7] H. Zhong, et al., J. of Electronic Materials, vol.30, p.1493, 2001.
[8] Y. H. Kim, et al., IEDM Tech. Dig., p.667, 2001.
[9] J. K. Schaeffer, et al., MRS spring meeting, April, 2002.
[10] I. Polishchuk, et al., IEEE Electron Device Lett., vol.22, p.444, 2001.
[11] H. Zhong, et al., IEDM Tech. Dig., p.467, 2001.
[12] C. Wang, et al., Appl. Phys. Lett., vol.83 (2), pp.308, 2003.
[13] C. Hobbs, et al., Symp. VLSI Tech. Dig., pp.9, 2003
[14] IEDM Short Course 2004, Mark Rodder, Texas Instrument.
[15] IEDM Short Course 2004, Stefan De Gendt, IMEC.
[16] W. Zhu, et al., Trans. Elec. Dev. Lett., vol.51 (1), pp.98, 2004.
[17] M. V. Fischetti, et al., J. Appl. Phys., vol.90 (9), pp.4587, 2001.
[18] Robert Chau, et al., Elec. Dev. Lett., vol.25 (6), pp.408, 2004.
[19] H. Ono, et al., Appl. Phys. Lett., vol.73, no.11, p.1517, 1998.
[20] R. Beyers, J. of Appl. Phys., vol.56, p.1, 1984.
[21] V. Misra, et al., 2002, MRS bulletin, vol.27, no.3, p.212
[22] C.Wang,et al.,Appl.Phys.Lett.,vol.83,pp.308,2003
[23] S. Zafar et al., Apply Phys. Letter, vol. 80, pp. 4858-4860, 2002.
[24] Huang-Chun Wen et al., July 2006, IEEE EDL, vol.27, no.7 pp.598-601
[25] Po-Yen. Chien, Integration of electrical characteristics for MOS devices with Molybdenum metal gate 2007, thesis in the Department of Engineering and System Science, NTHU.
[26] N. V. Nguyen, et al., Appl. Phys. Lett., 77, 3012 (2000).
[27] P. T. Gao, et al., Thin Solid Films, 377, 557 (2000).
[28] K. Kukli, et al., Thin Solid Films, 260, 135 (1995).
[29] M. Cassir, et al., Appl. Surf. Sci., 193, 120 (2002).
[30] C. M. Perkins, et al., Appl. Phys. Lett., 78, 2357 (2001).
[31] C. Chaneliere, et al., Microelectron. Reliab., 39, 261 (1999).
[32] D. D. L. Chung, et al., X-Ray Diffraction at Elevated Temperatures: A Method for In-Situ Process Analysis, Chap.1, VCH Publishers, New York (1993).
[33] Powder Diffraction File: Inorganic and Organic Data Book, PDF#19-1299, 25-0922, 25-1257, 25-1366, 27-1402, 34-1084, 42-0060, 42-1120, and 72-1088, JCPDS – International Center for Diffraction Data, American Society for Testing and Materials, Swarthmore, PA (1950-2003).
[34 ] K. Onishi, et al., Symp. VLSI Tech., p.131, 2001.
[35] Po-Yen. Chien, Integration of electrical characteristics for MOS devices with Molybdenum metal gate 2007, thesis in the Department of Engineering and System Science, NTHU.
[36] D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., John Wiley & Sons, New York (1998).
[37] Tzung-Lin Li et al., IEEE Transactions on Electron Devices, VOL. 53, NO. 6, p.1420-1426, JUNE 2006.
[38] Stanley Wolf, 1990, Silicon Processing for the VLSI ERA, vol.2, Lattice Press, California
[39] Yasushi AKASAKA et al., Japanese Journal of Applied Physics Vol. 45, No. 4B, 2006, pp. 2933–2938.
[40] Heiji Watanabe, et al., APL 85, p.449, 2004
[41] Hsin-Chun Chang, “Integration of metal gate and high-k gate dielectric for advanced MOS devices” 2006 thesis in the Department of Engineering and System Science, NTHU.
[42] Huei-Chi Chuang, “Electrical characteristic enhancement of MOS device with gate stack dielectrics and interfacial layer engineering ”2007, thesis in the Department of Engineering and System Science, NTHU.
[43] Jaehyun Kim and Kijung Yung, ECS, 152 (10) F153-155, 2005
[44] V. Mikhelashvili, e al., IEEE EDL 27, p.344, 2006
[45] Paul E. Nicollian, et al., in IRPS, p.400-404, 1999
[46] H. Y. Yu, et al., IEEE Electron Device Lett., vol.25, pp.337-339, 2004.
[47] Chih-Feng HUANG, Japanese Journal of Applied Physics Vol. 47, No. 2, 2008, pp. 872–878
[48] Jiang Lu, Yue Kuo, 2006 American Vacuum Society. _DOI: 10.1116 /1.2163883_
[49] Heiji Watanabe, et al.,APL 85,p449,2004
[50]張新君,「金氧半元件金屬閘極和高介電係數電層之製程整合研究」,2006
[51] J. F. Kang, et al., IEEE Electron Device Lett., 2005; 26: 237-9.
[52] Jahan C, et al., Microelectron Reliab. 37 1529-32, 1997.
[53] S. H. Bae, et al., IEEE Electron Device Lett. , vol 24, no. 9, 2003
[54] Yan Ny Tan, et al., IEEE TED 53, p.654, 2006