簡易檢索 / 詳目顯示

研究生: 賴大渭
Lai, David
論文名稱: 自行車騎行動力學理論與安全性分析
The Riding Dynamics and Safety Analysis of a Bicycle
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 107
中文關鍵詞: 煞車安全自行車動力學同步理想煞車
外文關鍵詞: brake safety, bicycle riding dynamics, ideal synchronization brake
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討自行車的煞車安全性,經由建立騎行動力學的數學模型與參數模擬分析,來獲得提昇煞車性能的關鍵因素。由於自行車是以人力來驅動,因此行進間的操控安全性,無不以煞車性能為最重要的指標。文中首先建立煞車安全性的理論分析模型,在不同路面的摩擦係數下,由前後輪可達到之最大減加速度,獲得最大煞車力以及最短的煞車距離,此為同步理想煞車重要的分析結果。
    在剛性自行車架的數學模型建立與模擬分析方面,本文分別以直線運動以及二維與三維轉彎模型,來推導直線行進與轉彎運動的理論數學方程式;在全避震自行車的分析方面,首先建立運動參數理論模型,其中包含前、後輪與車架避震系統,再以拉格朗齊法建立整車運動方程式。文中同時建立騎行力學相關模擬條件,作為直線煞車與轉彎運動參數模擬與分析的基礎。
    對整車煞車安全性之模擬分析方面,可由本文理論所推導的結果,來探討剛性與全避震自行車的騎行與煞車安全性問題。文中運用理想煞車性能分佈曲線,獲得前後輪煞車力最佳化分配,達到同步理想煞車,以提高自行車之煞車性能;此外於避震車的直線騎行動態響應模擬,亦利用理想同步煞車觀念來改善過大煞車力的情形。最後探討在一般騎行時,以前後輪煞車力分配與時間延遲來避免其中一輪先鎖死,所得模擬結果,可作為同步理想煞車器,於工程實務設計的參考依據。


    Bicycles are driven by manpower, therefore, the brake safety is considered to be the most crucial index for high-quality bicycles. This paper focused on establishing mathematical model and then conducting parametric analysis of the riding dynamics for both rigid and fully suspended bicycle frames. The key factors for improving the brake performance of a bicycle can be obtained from the analyses of various friction coefficients of road surfaces, the types of bicycle frames, and the methods of brake forces applied.
    This paper employed the linear motion (1D), 2-D and 3-D turning conditions to establish the physical models of riding dynamics of the rigid bicycle frame and then derive the mathematical equations, which was used as a foundation of parametric analysis for linear brake and turning movement. Regarding the analysis of a fully suspended bicycle, a theoretical model that consisted of a front wheel, a rear wheel and a frame equipped with suspensions was established first. After that, the Lagrange method was used to derive the equations of motion for the bicycle, which led to the analysis of various riding parameters.
    Regarding the simulation and analysis of brake safety, the issues of riding and brake safety on rigid and fully suspended bicycles were discussed based on the results derived from the theoretical derivation. In the paper, the distribution curve of ideal brake force was used to obtain the optimal ratio of braking force for front and rear wheels, so ideal synchronization brake could be achieved and the brake performance of a bicycle could be improved. In addition, the simulation of dynamic response to linear riding of suspension bicycle also used the concept of ideal synchronization brake to improve the difficulty of excessive brake force. Discussion was implemented on braking force for front and rear wheels in using time delay during applying brake force, which prevents dead lock on one wheel. The simulation results obtained can be used as reference of practical engineering design on the ideal synchronization brake.

    目 錄 ABSTRACT………………………………………………... I 摘要………………………………………………………... II 誌謝………………………………………………………... III 目錄………………………………………………………... IV 圖目錄……………………………………………………... VII 表目錄……………………………………………………... X 第一章、前言…………………………………………….. 1 1.1研究動機與目的….………………………………… 1 1.2論文回顧….………………………………………… 2 1.3研究內容與方向….………………………………… 6 第二章、剛性車架自行車之騎行動力學 …….………. 8 2.1自行車基礎騎行力學….…………………...…..…. 8 2.1.1 輪胎轉向力………………….….………..……. 8 2.1.2 輪胎傾斜推力….…………………………..….. 10 2.1.3 輪胎對路面的特性與限制….………..………. 11 2.1.4 輪胎著力點力學分析….……………….…….. 12 2.1.5 自行車騎乘的穩定條件….…………….…….. 16 2.2碟式煞車基本原理…………………………………. 20 2.3剛性自行車二維與三維轉彎騎行力學模型…….. 26 2.3.1 二維轉彎運動模型…………………………….. 26 2.3.2 三維轉彎運動模型…………………………….. 30 2.3.3 質心位置傾斜角及橫滑角之三維轉彎數學模型 34 第三章、全避震自行車系統理論模型推導………….… 39 3.1全避震自行車系統基礎理論…………….…………. 39 3.1.1前避震系統理論基礎……………………………. 39 3.1.2後輪避震機構設計參數…………………………. 43 3.2全避震自行車運動模型推導……………………… 44 3.2.1座標系定義………………..………..……………… 45 3.2.2約束方程式……………………..…..………….……… 46 3.2.3能量方程式與拉格朗齊方程式推導………...……….. 48 3.2.4 Runge-Kutta Method…………………………………... 52 第四章、自行車煞車安全性與力學模擬分析……….. 55 4.1自行車煞車安全性基本理論…………………….… 55 4.1.1 煞停距離……………………………………………… 55 4.1.2 安全煞車性能………………………………………… 56 4.2剛性自行車理想同步煞車理論與安全性分析..… 58 4.2.1 煞車效率……………………………………………… 58 4.2.2 煞車時前後輪軸荷重變化與煞車力………………… 60 4.2.3 前後輪同步理想煞車分析…………………………… 62 4.2.4 坡度對理想煞車曲線的影響………………………… 71 4.3剛性車架二維與三維轉彎煞車模型模擬分析….. 73 4.4全避震自行車煞車安全性模擬分析……………... 88 第五章、結論…………………..………………..………… 97 5.1工程設計實務應用結論…………………………… 98 5.2提供後進研究者建議……………………………… 100 參考文獻……………………………………………………. 105 圖 目 錄 圖2.1 轉向力(上視圖)……………….………………………...……9 圖2.2 自行車轉向力的大小[15] ……………………….………..……10 圖2.3 傾斜推力示意圖………………………………….………..……10 圖2.4 傾斜推力的大小[15] ….…………………………………..……11 圖2.5 有橫滑角之車輪作用在輪胎接地部位的作用力………...……11 圖2.6 無橫滑角之車輪作用在輪胎接地部位的作用力…………...…12 圖2.7 作用在有橫滑角車輪上的力...…………………………………12 圖2.8 有橫滑角作用輪胎接地部的水平力圖……………...…………13 圖2.9 自行車尺寸定義說明圖……………………………...…………17 圖2.10 直線運動系統受力圖...……………………………………..…18 圖2.11 曲線運動系統受力圖…………………………………….....…19 圖2.12 煞車力作用時轉向力的變化…………………………….....…19 圖2.13 碟式煞車器之摩擦阻力與煞車摩擦力………………….....…22 圖2.14自行車之曲線運動模型..…………………………………....…27 圖2.15自行車模型自由體圖………………………………..……....…28 圖2.16 自行車後視自由體圖…………………………...…..……....…31 圖2.17 座標轉換關係示意圖…………………………...…..……....…31 圖2.18 穩定車身扭矩示意圖…….……………………..…..……....…33 圖2.19以質心位置推導自行車三維轉彎運動模型圖…..……………35 圖3.1 前避震器機構示意圖………………………………………...…40 圖3.2 避震器受外力脈衝響應…………………………..………...…41 圖3.3 連續週期方波響應………………………………..………...…42 圖3.4 改變荷重之時間響應圖………………………..…………...…42 圖3.5後避震連桿機構…………………..…………………...……...…43 圖3.6全避震自行車座標系…..……………………………...……...…45 圖3.7全避震車前輪系統幾何圖………………………...……..…...…46 圖4.1 煞車時的方向穩定性………………………...…...……..…...…57 圖4.2 煞車時的操控性….…………………………..…...……..…...…57 圖4.3 剛性自行車尺寸定義圖…..…...……..….…………………...…58 圖4.4 前後輪最大煞車力分析模擬.……………………...………...…63 圖4.5 理想煞車力分佈曲線…………….………………...………...…64 圖4.6 前後輪不同煞車力比之理想同步煞車模擬………....……...…67 圖4.7 前、後輪最大同步煞車模擬....……………………………...…68 圖4.8 重心移動對理想同步煞車的影響…………………………...…69 圖4.9 不同路面制動力係數對理想同步煞車的影響……………...…70 圖4.10 坡道煞車示意圖………………………………………..…...…71 圖4.11 坡度對理想煞車曲線的影響…………………………..…...…73 圖4.12直線煞車時前後輪荷重變化…………………………...…...…74 圖4.13 轉彎運動時的傾斜操作………………………………..…...…76 圖4.14 轉彎過程傾斜角的變化模擬…………………………..…...…77 圖4.15 兩種不同煞車力對曲率半徑的影響…..…………………...…78 圖4.16 碟煞偏心扭矩的影響..……………………………………...…79 圖4.17 切線方向力與橫滑角加速度模擬圖………………..……...…80 圖4.18 切線方向力與傾斜角模擬圖………………………..……...…81 圖4.19 法線方向力與橫滑角速度模擬圖…………………..……...…82 圖4.20 法線方向力與傾斜角加速度模擬圖………………..……...…82 圖4.21 法線方向力與傾斜角模擬圖………………………..……...…83 圖4.22 正向力與傾斜角速度模擬圖……….………...……..……...…84 圖4.23 正向力與橫滑角速度模擬圖……….………...……..……...…85 圖4.24 正向力與傾斜角模擬圖……….………...……..…………...…86 圖4.25 角速度變化法線受力Fn與切線受力Ft模擬圖…….……...…87 圖4.26 角加速度變化法線受力Fn與切線受力Ft 模擬圖...……...…88 圖4.27全避震自行車靜力平衡初始系統圖.……………………….…89 圖4.28 全避震車碟式煞車模擬圖………………………………….…90 圖4.29前後輪煞車模擬軌跡圖………………….………………….…91 圖4.30 過大煞車力之改善方法一…………….………...………….…91 圖4.31 過大煞車力之改善方法二…………….………...………….…92 圖4.32a 煞車扭矩對前避震器之影響一…….………...………..….…93 圖4.32b 煞車扭矩對前避震器之影響二…….………...………..….…93 圖4.33質心位置對避震器之影響…….……………......………..….…94 圖4.34無避震器之前輪煞車行為…….……………......………..….…95 圖4.35阻尼值對前輪煞車行為的影響……………......………..…..…95 圖4.36a 無避震器之自行車煞車軌跡…………......…….……..…..…96 圖4.36b 有避震器之自行車煞車軌跡…………......…….……..…..…97 圖5.1自行車騎行動力與煞車測試平台…………….…………...…..101 圖5.2 測試平台系統流程圖……………………………………...…..101 圖5.3 力量感測器………………………………………………...…..103 圖5.4 氣壓控制煞車裝置………………………………………...…..103 表 目 錄 表2.1 車輪受力符號說明……………………………………….……..14 表2.2 碟煞系統符號說明…………………………………….………..23 表2.3 新舊輪胎與路面間摩擦係數..……………………..….………..24 表2.4 不同路面轉動阻力係數…………………………..……..….…..24 表2.5 曲線運動相關符號說明………………………………..….…....27 表2.6 轉彎運動自由體圖符號說明………………………….....……..29 表3.1 前避震器機構模型符號….....………………………...………...41 表3.2 全避震車運動參數符號說明………………………...….……...50 表4.1 直線運動剛性自行車模擬參數符號說明………...…….……...59 表4.2 直線運動剛性自行車模擬尺寸數值...………………….……...62 表4.3 二維轉彎剛性自行車模擬參數符號表……………...….……...79 表4.4 全避震車靜力平衡狀態符號定義參數值……………………...88

    1. Tousi, S., Bajaj, A. K., Soedel, W., 1991, “Finite Disturbance Directional Stability of the Vehicles with Human Pilot Concerning Nonlinear Cornering Behavior,” Vehicle System Dynamics, Vol. 20, pp. 21-55.
    2. Legouis, T., Laneville, A., Bourassa, P., and Payre, G., 1986, “Characterization of Dynamic Vehicle Stability Using Two Models of the Human Pilot Behavior,” Vehicle System Dynamics, Vol. 15, pp. 1-18.
    3. Tousi, S., Bajaj, A. K., and Soedel, W., 1988, “On the Stability of a Flexible Vehicle Controlled by a Human Pilot,” Vehicle System Dynamics, Vol. 17, pp.37-56.
    4. Shladover, S. E., Wormly, D. N., Richardson, H. H., and Fish, R., 1978, “Steering Controller Design for Automated Guideway Transit Vehicles.,“Journal of Dynamic System Measurement and Control, ASME TRANS, 100, pp. 1-8.
    5. Roderick, G., et al, 2004, “Automotive Steering Control in a Split-μ Manoeuvre Using an Observer-Based Sliding Mode Controller,” Vehicle System Dynamics, Vol. 41, pp. 181-202.
    6. Shannan, J. E., and Vanderploeg, M. J., 1989, “A Vehicle Handling Model with Active Suspension, ” Journal of Mechanisms, Transmissions, and Automation in Design, ASME TRANS, Vol. 111, pp. 375-381.
    7. Young, H. C., and Kim, J., 1996, “Stability Analysis of the Human Controlled Vehicle Moving Along a Curved Path,” Vehicle System Dynamics, Vol. 25, pp. 51-69.
    8. Weir, D. H., and McRuer, D., 1970, “Dynamics of Driver Vehicle Steering Control,” Automatica, Vehicle System Dynamics, Vol. 6, pp. 87-98.
    9. James, S. R., 2005, “Lateral Dynamics of Motorcycles Towing Single-wheeled Trailers,” Vehicle System Dynamics, Vol. 43, pp. 581-599.
    10. Chumsamutr, et al, 2006, “Sensitivity analysis of side-slip angel observer based on a tire model,” Vehicle System Dynamics, Vol. 44, pp. 513-527.
    11. Bakker, E., Nyborg, L., and Pacejka, H. B., 1987, “Tire Modeling for Use in Vehicle Studies,” Society of Automotive Engineers, SAE Paper No. 870421.
    12. Bakker, E., H.B. Pacejka, and L. Lidner, 1989, “A New Tire Model with an Application in Vehicle Dynamics Studies,” Society of Automotive Engineers, SAE Paper No. 890087.
    13. Bernard, J. E., Segel, L., and Wild, R. E., “Tire Shear Force Generation During Combined Steering and Braking Maneuvers,” Society of Automotive Engineers, SAE-paper 770852.
    14. Qu, Qiuzhen, and Liu, Yanzhu, 2000, “On Lateral Dynamics of Vehicles Bases on Nonlinear Characteristics of Tires,” Vehicle System Dynamics, Vol. 34, pp. 131-141.
    15. 塚田,高田,中切,1968, 二輪車基礎研究(第一報:輕二輪車輪胎特性),日本機械學會講演論文集,No. 190(1968-4), 111, 日本機械學會
    16. Vittore, C., Alberto, D. and Roberto, L., 1999, ”Steady Turning of Two-Wheel Vehicles,” Vehicle System Dynamics,Vol. 31, pp. 157-181.
    17. Nakazawa, M., Isobe, O., and Watanabe. Y., 1995, “Braking Force Distribution Control for Improved Vehicle Dynamics and Brake Performance,” Vehicle System Dynamics, Vol. 24, pp. 413-426.
    18. Edge, C. Y., Guan, K. R., and Hsien, Y., 1995, “Developing of an Anti-Lock Brake System for Motorcycle,” Vehicle System Dynamics, Vol. 24, pp. 427-444.
    19. Vittore, C., Alberto, D. and Roberto, L., 2000, “Optimum Suspension Design for Motorcycle Braking,” Vehicle System Dynamics, Vol. 34, pp. 175-198.
    20. Dahlberg, T.,1977, “Parametric Optimization of a 1-DOF Vehicle Travelling on a Randomly Profiled Road,” Journal of Sound and Vibration, Vol.55, No.2, pp. 245-253.
    21. Dahlberg, T.,1978, “Ride Comfort and Road Holding of a 2-DOF Vehicle Traveling on a Randomly Profiled Road,” Journal of Sound and Vibration, Vol. 58, No.2, pp. 179-187.
    22. Hac, A.,1985, “Suspension Optimization of a 2-DOF Vehicle Model Using a Stochastic Optimal Control Technique,” Journal of Sound and Vibration, Vol.100, No.3, pp. 343-357.
    23. Hrovat, D.,1988, “Influence of Usprung Weight On Vehicle Ride Quality”, Journal of Sound and Vibration, Vol.124, No.3, pp. 497-516.
    24. Hrovat, D.,1991, “Optimal Suspension Performance for 2-D Vehicle Models,” Journal of Sound and Vibration, Vol.146, No.1, pp. 93-110.
    25. Matthias, W. , Falk R. , and Norbert, Z.,2002, “A Multi-body Model for the Simulation of Bicycle Suspension Systems,” Vehicle System Dynamics, Vol. 37, pp. 3-28.
    26. Vittore, C., Alberto, D. and Roberto, L., 2002,” A Motorcycle Multi-Body Model for Real Time Simulations Based on the Natural Coordinates Approach,” Vehicle System Dynamics, Vol. 37, No.6, pp. 423-447.
    27. Cossalter, V., et al, 2003, “Dynamic Properties of Motorcycle and Scooter Tires: Measurement and Comparison,” Vehicle System Dynamics, Vol. 39, No5, pp. 329-352.
    28. Chou, H., et al, 2005, “Global vehicle control using differential braking torques and active suspension forces,” Vehicle System Dynamics, Vol. 43, pp. 261-284.
    29. Vangi, D. and Virga, A., 2007,” Evaluation of emergency braking deceleration for accident reconstruction,” Vehicle System Dynamics, Vol. 45, No.6, pp. 895-910.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE