研究生: |
林子楓 Lin, Tz-Feng |
---|---|
論文名稱: |
Helical Morphologies in Self-assembly of Chiral Rod-coil Molecules |
指導教授: |
何榮銘
Ho, Rong-Ming |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 136 |
中文關鍵詞: | 螺旋體 、掌性 、自組裝 |
外文關鍵詞: | helicity, chiral, self-assembly, rod-coil, sugar, chiral smectic C |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this study, a series of chiral Schiff-based rod-coil amphiphiles were used for self-assembly to examine the forming mechanisms of helical architectures. The chiral Schiff-based rod-coil amphiphiles exhibited both the lyotropic and thermotropic liquid crystalline behavior. All chiral Schiff-based rod-coil amphiphiles appeared positive Cotton effect, and there is no odd-even effect with respect to the alkyl chain length for the formation of helical microdomain. Interestingly, the helical twisting power (i.e., HTP, the inversed value of pitch length) induced by chiral sugar of the self-assembled helical morphology is dependent upon the alkoxyl chain length. By increasing the alkoxyl chain length, the self-assembled morphologies vary from platelet-like texture to helical twist with different pitch lengths, and finally revert to the platelet-like texture. On the basis of structural characterization and spectroscopic analysis, the transformation from platelet-like morphology to helical twist is induced by significant steric hindrance at which the effective size of adjacent alkoxyl chain reaches the threshold of helical twisting and bending. However, further increasing the alkoxyl chain length, the disordering of the alkoxyl chain conformation in the smectic-like layered structure may give rise to structural imperfection so as to reduce the steric hindrance effect. Eventually, the steric hindrance effect may compromise with the structural imperfection so that a platelet-like morphology was formed.
Also, we aim to control the handedness of helical twist from the self-assembly of the chiral rod-coil molecules. Various chiral rod-coil molecules with equal alkoxyl chain length but different chain-end size were designed for the discussion of chain end effect in the self-assembly. The self-assembled helical twists with equivalent helical twisting power but opposite handedness can be obtained from the chiral rod-coil molecules with or without bulky substitution at the alkoxyl chain end. The selection of helicity is resulted to the molecular packing and its Gaussian saddle-like curvature for self-assembly. If the sugar-based chiral rod-coil molecules were modified into acetate-based chiral rod-coil molecules, similar self-assembly results still can be obtained; suggesting that the amphiphilicity of the chiral rod-coil molecules is not critical for the formation of helical twists and its corresponding helicity.
Furthermore, we observed a banded morphology in our molecular system under polarized light microscopy (PLM). The appearance of the banded texture is strongly dependent upon the alkoxyl chain length that determines the twisting power of self-assembled hierarchical superstructures with helical sense. The formation of banded spherulites is identified as quaternary helical morphology with a collection of the tertiary chiral superstructures (i.e., helical twists) so as to give regular extinction in PLM attributed to zero-birefringence effect. Consistent to the observation of helical morphologies, the occurrence of chiral smectic C (SmC*) phase can only be found in samples with enough alkoxyl chain length; suggesting the existence of strong correlation for morphological evolution from molecular level to macroscopic object with the formation of SmC*. A hypothetic model about the bilayer structure within the SmC* structure is given to elucidate the morphological evolution. Consequently, the self-assembly of the chiral amphiphiles with thermotropic liquid crystalline character represents the mechanism for the chiral information transfer in different length scales. The transfer of chiral information from molecular level to quaternary superstructure can be identified.
Finally, an iron-rich spiral superstructures by taking advantage of the self-assembly of chiral Schiff-based rod-coil molecules is proposed for potential optical or mechanical applications. Chiral Schiff-based rod-coil molecules are end-capped with ferrocene moiety as chiral rod-coil organometallics (FC11). We described the self-assembly of FC11 that develops into ferrocene iron-rich spiral superstructure. The fundamentally new self-assembled FC11 spiral superstructure is a fabrication technology which acts as a template for the formation of twist ferrocene wires after pyrolysis treatment. In an attempt to give orientated template, the self-assembly of FC11 is performed under one Tesla external magnetic field due to its intrinsic dielectric constant. Such spiral metallic wires will contribute to the development of microelectronic organic-inorganic functional devices. The well-defined building blocks of ferrocene-based derivatives play an important role in dynamic responsive displays as well as in biological systems which stimulated by external fields.
References
(1) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-2421.
(2) (a) Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, Germany, 1995. (b) Lehn, J.-M. Science 2002, 295, 2400-2409.
(3) Deng, T.; Chenb,C.; Honekerb,C.; Thomas, E. L. Polymer 2003, 44, 6549-6553.
(4) Muthukumar, M.; Ober, C. K., Thomas, E. L. Science 2002, 277, 1225-1232.
(5) Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. J. Mater. Chem. 2003, 13, 2661-2670.
(6) Schenning, A. P. H. J.; Herrikhuyzen, J. V.; Jonkheijm, P.; Chen, Z.; Wuerthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 10252-10253.
(7) Kato, T.; Matsuoka, T.; Nishii, M.; Kamikawa, Y.; Kanie, K.; Nishimura, T.; Yashima, E.; Ujiie, S. Angew. Chem. Int. Ed. 2004, 43, 1969-1972.
(8) Barboiu, M.; Vaughan, G.; Kyritsakas, N.; Lehn, J.-M. Chem. Eur. J. 2003, 9, 763-769.
(9) Kato, T. Science 2002, 295, 2414-2418.
(10) Kanie, K.; Yasuda, T.; Ujiie, S.; Kato, T. Chem. Commun. 2000, 19, 1899-1900.
(11) Kanie, K.; Nishii, M.; Yasuda, T.; Taki, T.; Ujiie, S.; Kato, T. J. Mater. Chem., 2001, 11, 2875–2886.
(12) Kunitake, T.; Okahata, Y. J. Am. Chem. Soc. 1980, 102, 549.
(13) Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.; Takarabe, K. J. Am. Chem. Soc. 1981, 103, 5401.
(14) Kunitake, T. Angew. Chem., Int. Ed. Engl. 1992, 31, 709.
(15) Pisula, W.; Kastler, M.; Wasserfallen, D.; Pakula, T.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 8074-8075 and references therein.
(16) Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427-1430.
(17) Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039-4070.
(18) Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289-8294.
(19) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785-788.
(20) Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480-1486.
(21) Sakurai, S.-I.; Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromolecules 2003, 36, 9670-9674.
(22) Goto, H; Okamoto, Y; Yashima, E. Macromolecules 2002, 35, 4590-4601.
(23) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345-6359.
(24) Yashima, E.; Maeda, K.; Okamoto, Y. Nature 1999, 99, 449-451.
(25) Maeda, K.; Morino, K.; Yashima, E. J. Polym., Sci. Part A: Polym. Chem. 2003, 41, 3625–3631.
(26) Yashima, E.; Maeda, K.; Nishimura T. Chem. Eur. J. 2004, 10, 42-51.
(27) Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1996, 118, 9800.
(28) Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromolecules 2000, 33, 4616.
(29) Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441.
(30) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793-1796.
(31) Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 2643-2644.
(32) Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134-6135.
(33) Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew.Chem., Int. Ed. 2000, 39, 228-230.
(34) Brunsveld, L.; Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000, 2, 1525-1528.
(35) Fuhrhop J.H,; Schnieder P,; Boekema E,; Helfrich W. J. Am. Chem. Soc. 1988, 110, 2861-2867.
(36) Brunsveld, L.; Zhang, H.; Vekemans, J. A. J. M.; Meijer, E.W. J. Am. Chem. Soc. 2000, 122, 6175-6182.
(37) Brunsveld, L.; Lohmeijer, B. G. G.; Vekemans, J. A. J. M.; Meijer, E.W. Chem. Commun. 2000, 23, 2305-2306.
(38) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E.W. Nature 2000, 407, 167-170.
(39) Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E.W. J. Am. Chem. Soc. 2001, 123, 409-416.
(40) Jonkheim, P.; Hoeben, F. J. M.; Kleppinger, R.; Herrikhuyzen, J. V.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 15941-15949.
(41) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071-4097.
(42) Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. De; Schenning, A. P. H. J.; Schryver, F. C. De; Meijer, E.W. Angew. Chem. Int. Ed. 2004, 43, 74-78.
(43) Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E.W. Proc. Natl. Acad. Sci. USA 2002, 99, 4977-4982.
(44) Yoon, Y.; Zhang, A.; Ho, R.-M.; Cheng, S. Z. D.; Percec, V.;Chu, P. Macromolecules 1995, 29, 294-305.
(45) Yoon, Y.; Ho, R.-M.; Moon, B.; Kim, D.; McCreight, K. W.; Li, F.-M.; Harris, F. W.; Cheng, S. Z. D.; Percec, V.; Chu, P. Macromolecules 1996, 29, 3421-3431.
(46) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72-79.
(47) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524-527.
(48) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Ge, J. J.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phy. Rev. B. 1999, 60, 12675-12680.
(49) Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Yan, D.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558-4561.
(50) Weng, X.; Li, C. Y.; Jin, S.; Zhang, D.; Zhang, J. Z.; Bai, F.; Harris, F. W.; Cheng, S. Z. D. Macromolecules 2002, 35, 9678-9686.
(51) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C. C.; Ko, B. T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704-2705.
(52) Ho, R.-M.; Chiang, Y.-W.; Lin, S.-C.; Chen, C.-K. accpeted by Prog. Polym. Sci. 2010.
(53) (a) Fuhrhop, J. H.; Helfrich, W. Chem. Rev. 1993, 93, 1565-1582. (b) Spector, M. S.; Price, R. R.; Schnur, J. M. Adv. Mater. 1999, 11, 337-340. (c) Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. J. Am. Chem. Soc. 2002, 124, 10674-10675. (d) Goodby, J. W.; Waugh, M. A.; Stein, S. M.; Chin, E.; Pindak, R.; Patel, J. S. J. Am. Chem. Soc. 1989, 111, 8119-8125.
(54) (a) Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudson, S. D.; Duan, H. Nature 1998, 419, 384-387. (b) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-768.
(55) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684-1688. (b) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am. Chem. Soc. 2001, 123, 4105-4106.
(56) Li, C. Y.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Calhoun, B. H.; Harris, F. W.; Chien, L.-C.; Lotz, B. J. Am. Chem. Soc. 2001, 123, 2462-2463.
(57) (a) Chiang, Y.-W.; Ho, R.-M.; Thomas, E. L.; Burger, C.; Hsiao, B. S. Adv. Funct. Mater. 2009, 19, 448-459. (b) Chiang, Y.-W.; Ho, R.-M.; Ko, B.-T.; Lin, C.-C. Angew. Chem. Int. Ed. 2005, 44, 7969-7972. (c) Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Ko, B.-T.; Lin, C.-C. Adv. Mater. 2006, 18, 2355-2358.
(58) Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J., MacKintosh, F. C. Nature 1999, 399, 566-569.
(59) Thunemann, A. F.; Kubowicz, S.; Burger, C.; Watson, M. D.; Tchebotareva, N.; Mullen, K. J. Am. Chem. Soc. 2003, 125, 352-356.
(60) Spector, M. S.; Selinger, J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493-3500.
(61) Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328-4334.
(62) (a) Van Doren, H. A.; Smits, E.; Pestman, J. M.; Engberts, J. B. F. N.; Kellogg, R. M. Chem. Soc. Rev., 2000, 29, 183-199. (b) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903-1907. (c) Jung, J. H.; Yoshida, K.; Shimizu, T. Langmuir 2002, 18, 8724-8727.
(63) (a) Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201-1217. (b) John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715-718. (c) John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5495-5500.
(64) Shimizu, T.; Jung, J. H.; Yoshida, K. Langmuir 2002, 18, 8724-8727.
(65) Masuda, M.; Vill, V.; Shimizu, T. J. Am. Chem. Soc. 2002, 122, 12327-12333.
(66) Laurent, N.; Lafon, D.; Dumoulin, F.; Boullanger, P.; Mackenzie, G.; Kouwer, P. H. J.; Goodby, J. W. J. Am. Chem. Soc. 2003, 125, 15499-15506.
(67) Hamley, I. W. The Physics of Block Copolymers; VCH: Oxford University, New York, 1998.
(68) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525-557.
(69) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091-1098.
(70) Klok, H.-A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217-1229.
(71) (a) Ruokolainen, J.; Tanner, J.; Ikkala, O.; ten Brinke, G.; Thomas, E. L. Macromolecules 1998, 31, 3532-3536. (b) Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557-560. (c) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777-781. (d) Ikkala, O.; ten Brinke, G. Science 2002, 295, 2407-2409. (e) Halperin, A. Macromolecules 1990, 23, 2724-2731. (f) Lee, M.; Cho, B.-K.; Jang, Y.-G.; Zin, W.-C. J. Am. Chem. Soc. 2000, 122, 7449-7455. (g) Lee, M.; Yoo, Y.-S. J. Mater. Chem. 2002, 12, 2161-2168. (h) Ryu, J.-H.; Oh, N.-K.; Zin, W.-C.; Lee, M J. Am. Chem. Soc. 2004, 126, 3551-3558. (i) Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G.-P. Science 1996, 273, 343-346. (j) Osuji, C.; Chao, C.-Y.; Bita, I.; Ober, C. K.; Thomas, E. L. Adv. Func. Mater. 2002, 12, 735-758. (k) Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705-1709. (l) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Kesser, M.; Amstutz, A. Science 1997, 276, 384-389. (m) Stupp, S. I.; Braun, P. V. Science 1997, 277, 1242-1248. (n) Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I. Science 1999, 283, 523-527. (o) Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Mullen, K.; Pakula, T. J. Am. Chem. Soc. 2003, 125, 1682-1683. (p) Thunemann, A. F.; Ruppelt, D.; Ito, S.; Mullen, K. J. Mater. Chem. 1999, 9, 1055-1057. (q) Thunemann, A. F.; Ruppelt, D.; Burger, C.; Mullen, K. J. Mater. Chem. 2000, 10, 1325-1329. (r) Watson, M. D.; Jackel, F.; Severin, N.; Rabe, J. P.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 1402-1407. (s) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684-689. (t) Lee, M.; Kim, J. W.; Peleshanko, S.; Larson, K.; Yoo, Y. S.; Vaknin, D.; Markutsya, S.; Tsukruk, V. V. J. Am. Chem. Soc. 2002, 124, 9121-9128. (u) Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481-1483.
(72) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893-4011.
(73) Kitzerow, H.-S.; Bahr, C. Chirality in liquid crystals, VCH: Springer, New York, 2001.
(74) (a) Kuball, H. G.; Bruning, H.; Muller, T. J. Mater. Chem. 1995, 5, 2167-2174. (b) Kuball, H. G.; Bruning, H. Chirality 1997, 9, 407-423. (c) Gottarelli, G.; Spada, G. P. Materials-Chirality: Volume 24 of Topics in Stereochemistry; Green, M. M.; Nolte, R. J. M.; Meijer, E. W. Eds.; Wiley: Hoboken, NJ, 2003.
(75) (a) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789-1816. (b) Ichimura, K. Chem.Rev. 2000, 100, 1847-1874.
(76) (a) Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480-1486. (b) Hasegawa, T.; Morino, K.; Tanaka, Y.; Katagiri, H.; Furusho, Y.; Yashima, E. Macromolecules 2006, 39, 482-488. (c) Kim, H.-J.; Lee, E.; Park, H.-S.; Lee, M. J. Am. Chem. Soc. 2007, 129, 10994-10995.
(77) (a) Lifson, S.; Andreola, C.; Peterson, N. C.; Green, M. M. J. Am. Chem. Soc. 1989, 111, 8850-8858. (b) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. USA 2001, 98, 11857-11862.
(78) Sato, T.; Sato, Y.; Umemura, Y.; Teramoto, A.; Nagamura, Y.; Wagner, J.; Weng, D.; Okamoto, Y.; Hatada, K.; Green, M. M. Macromolecules 1993, 26, 4551-4559.
(79) (a) Emelyanenko, A. V.; Osipov, M. A.; Dunmur, D. A. Phys. Rev. E 2000, 62, 2340-2352. (b) Earl, D. J.; Wilson, M. R. J. Chem. Phys. 2003, 119, 10280-10288. (c) Neal, M. P.; Solymosi, M.; Wilson, M. R.; Earl, D. J. J. Chem. Phys. 2003, 119, 3567-3573. (d) Kamberaj, H.; Osipov, M. A.; Low, R. J.; Neal, M. P. Molec. Phys. 2004, 102, 431-446.
(80) Boettcher, C.; Schade, B.; Fuhrhop J.-H. Langmuir 2001, 17, 873-877.
(81) Messmore, B. W.; Sukerkar, P. A.; Stupp, S. I. J. Am. Chem. Soc. 2005, 127, 7992-7993.
(82) (a) Green, M. M.; Reidy, M. P. J. Am. Chem. Soc. 1989, 111, 6452-6454. (b) Cheon, K.-S.; Selinger, J. V.; Green, M. M. Angew. Chem. Int. Ed. 2000, 39, 1482-1485. (c) Green, M. M.; Cheon, K.-S.; Yang, S.-Y.; Park, J. W.; Swansburg, S.; Liu W. Acc. Chem. Res. 2001, 34, 672-680.
(83) (a) Huck, N. P. M.; Jager, W. F.; Lange, B.; Feringa, B. L. Science 1996, 273, 1686-1688. (b) Delden, R. A.; Gelder, M. B.; Huck, N. P. M.; Feringa, B. L. Adv. Funct. Mater. 2003, 13, 319-324. (c) Ohira, A.; Okoshi, K.; Fujiki, M.; Kunitake, M.; Naito, M.; Hagihara, T. Adv. Mater. 2004, 18, 1645-1650.
(84) (a) Inai, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.; Yamashita, M. J. Am. Chem. Soc. 2000, 122, 11731-11732. (b) Inai, Y.; Ishida, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T. J. Am. Chem. Soc. 2002, 124, 2466-2473.
(85) Li, L.-s.; Jiang, H.; Messmore, B. W.; Bull, S. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2007, 46, 5873-5876.
(86) (a) Demus, D., Goodby, J. W., Gray, G. W., Spiess, H.-W., Vill, V., Eds. Handbook of Liquid Crystals; Wiley-VCH: Weinheim, 1998. (b) Kitzerow, H. -S.; Bahr, C. Chirality in liquid crystals; VCH: Springer, New York, 2001.
(87) Helfrich, W.; Prost,J. Phys. Rev. A 1988, 38, 3065-3068.
(88) (a) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. Lett. 1990, 65, 1679-1682. (b) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. A 1991, 43, 6826-6836.
(89) Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71, 4091-4094.
(90) (a) Selinger, J. V.; MacKintosh, F. C.; Schnur, J. M. Phys. Rev. E 1996, 53, 3804-3818. (b) Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208-11216. (c) Nandi, N.; Bagchi, B. J. Phys. Chem. A 1997, 101, 1343-1351.
(91) (a) Caffrey, M.; Hogan, J; Rudolph, A. S. Biochemistry 1991, 30, 2134-2146. (b) Caffrey, M.; Cheng, A. Curr. Opin. Struct. Biol. 1995, 5, 548-555.
(92) Staveren, D. R.; Metzler-Nolte, N. Chem. Rev. 2004, 104, 5931-5985; b) Bellas, V.; Rehahn,M. Angew. Chem. Int. Ed. 2007, 46, 5082-5104.
(93) (a) Massey, J. A.; Temple, K.; Cao, L.; Rharbi, Y.; Raez, J.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2000, 122, 11577-11584. b) Skibar, W.; Kopacka, H.; Wurst, K.; Salzmann, C.; Ongania, K.-H.; Biani, F. F.; Zanello, P.; Bildstein, B. Organometallics 2004, 23, 1024-1041. c) Wang, H.; Winnik, M. A.; Manners, I. Macromolecules 2007, 40, 3784-3789; d) Soto, A. P.; Manners, I. Macromolecules 2009, 42, 40-42.
(94) (a) Lammertink, R. G. H.; Hempenius, M. A.; Enk, J. E. v. d.; Chan, V. Z.-H.; Thomas, E. L.; Vancso, G. J. Adv. Mater. 2000, 12, 98-103. b) Temple, K.; Kulbaba, K.; Power-Billard, K. N.; Manners, I.; Leach, K. A.; Xu, T.; Russell, T. P.; Hawker, C. J. Adv. Mater. 2003, 15, 297-300. c) Clendenning, S. B.; Han, S.; Coombs, N.; Paquet, C.; Rayat, M. S.; Grozea, D.; Brodersen, P. M.; Sodhi, R. N. S.; Yip, C. M.; Lu, Z.-H.; Manners, I. Adv. Mater. 2004, 16, 291-296. d) Hinderling, C.; Keles, Y.; Stöckli, T.; Knapp, H. F.; Arcos, T.; Oelhafen, P.; Korczagin, I.; Hempenius, M. A.; Vancso, G. J.; Pugin, R.; Heinzelmann, H. Adv. Mater. 2004, 16, 876-879.
(95) (a) Sung, C. H.; Kung, L. R.; Hsu, C. S.; Lin, T.-F.; Ho, R.-M. Chem. Mater. 2006, 18, 352-359. (b) Lin, T.-F.; Ho, R.-M.; Sung, C. H.; Hsu, C. S. Chem. Mater. 2006, 18, 5510-5519. (c) Lin, T.-F.; Ho, R.-M.; Sung, C. H.; Hsu, C. S. Chem. Mater. 2008, 18, 1404-1409. (d) Lin, T.-F.; Ho, R.-M.; Sung, C. H.; Ho, M.-S.; Hsu, C. S. Chem. Eur. J. 2010, 16, 7385-7388. All the synthetic works were done by Dr. Sung, C. H. and Dr. Ho, M.-S. at National Chiao Tung University, and we thank for Prof. Hsu kindly promotion of our cooperation study.
(96) Percec, V.; Keller, A. Macromolecules 1990, 23, 4347-4350.
(97) (a) Malthete, J; Jacques, J; Tinh, N. H.; Destrade, C. Nature 1982, 298, 46-48. (b) Kajitani, T.; Okoshi, K.; Sakurai, S.-I.; Kumaki, J.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 708-709. (c) Goto, H.; Akagi, K. Chem. Mater. 2006, 18, 255-262.
(98) (a) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 5th ed.; John Wiley: New York, 1991. (b) Philip, D. J.; Stoddart, F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196.
(99) (a) Ou-Yang, Z.-C.; Liu, J.-X.; Yu-Zhang, X. Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases World Scientific Publishing, Singapore, 1999. (b) Selinger, J. V.; Wang, Z.-G.; Bruinsma, R. F.; Knobler, C. M. Phys. Rev. Lett. 1993, 70, 1139-1142. (c) Selinger, R. L. B.; Selinger, J. V.; Malanoski, A. P.; Schnur, J. M. Phys. Rev. Let. 2004, 93, 158103-1-158103-4.
(100) (a) Harkins, W. D. Morgan, J. W. Chemistry: Harkins and Beeman 1925, 11, 631-637. (b) Kabalnov, A.; Wennerström, H. Langmuir 1996, 12, 276-292.
(101) Wade, L. G. Organic Chemistry Pearson Education, Inc., New Jersey, 2003.
(102) Samir, M. A. S. A.; Alloin, F.; Dufresne, A. Biomacromolecules 2005, 6, 612-626.
(103) (a) Jeong, K.-U.; Jin, S.; Ge, J. J.; Knapp, B. S.; Graham, M. J.; Ruan, J.; Guo, M.; Xiong, H. ; Harris, F. W.; Cheng, S. Z. D. Chem. Mater. 2005, 17, 2852-2865. (b) Jeong, K.-U.; Knapp, B. S. ; Ge, J. J.; Jin, S.; Graham, M. J.; Harris, F. W.; Cheng, S. Z. D. Chem. Mater. 2006, 18, 680-690. (c) Lin, S.-C.; Lin, T.-F.; Ho, R.-M.; Chang, C.-Y.; Hsu, C.-S. Adv. Funct. Mater. 2008, 18, 3386-3394 and references there in.
(104) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M.; Science 1999, 284, 785-788.
(105) Wang, X.; Liu, K.; Arsenault, A. C.; Rider, D. A.; Ozin, G. A.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2007, 129, 5630-5639.