簡易檢索 / 詳目顯示

研究生: 林子楓
Lin, Tz-Feng
論文名稱: Helical Morphologies in Self-assembly of Chiral Rod-coil Molecules
指導教授: 何榮銘
Ho, Rong-Ming
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 136
中文關鍵詞: 螺旋體掌性自組裝
外文關鍵詞: helicity, chiral, self-assembly, rod-coil, sugar, chiral smectic C
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, a series of chiral Schiff-based rod-coil amphiphiles were used for self-assembly to examine the forming mechanisms of helical architectures. The chiral Schiff-based rod-coil amphiphiles exhibited both the lyotropic and thermotropic liquid crystalline behavior. All chiral Schiff-based rod-coil amphiphiles appeared positive Cotton effect, and there is no odd-even effect with respect to the alkyl chain length for the formation of helical microdomain. Interestingly, the helical twisting power (i.e., HTP, the inversed value of pitch length) induced by chiral sugar of the self-assembled helical morphology is dependent upon the alkoxyl chain length. By increasing the alkoxyl chain length, the self-assembled morphologies vary from platelet-like texture to helical twist with different pitch lengths, and finally revert to the platelet-like texture. On the basis of structural characterization and spectroscopic analysis, the transformation from platelet-like morphology to helical twist is induced by significant steric hindrance at which the effective size of adjacent alkoxyl chain reaches the threshold of helical twisting and bending. However, further increasing the alkoxyl chain length, the disordering of the alkoxyl chain conformation in the smectic-like layered structure may give rise to structural imperfection so as to reduce the steric hindrance effect. Eventually, the steric hindrance effect may compromise with the structural imperfection so that a platelet-like morphology was formed.
    Also, we aim to control the handedness of helical twist from the self-assembly of the chiral rod-coil molecules. Various chiral rod-coil molecules with equal alkoxyl chain length but different chain-end size were designed for the discussion of chain end effect in the self-assembly. The self-assembled helical twists with equivalent helical twisting power but opposite handedness can be obtained from the chiral rod-coil molecules with or without bulky substitution at the alkoxyl chain end. The selection of helicity is resulted to the molecular packing and its Gaussian saddle-like curvature for self-assembly. If the sugar-based chiral rod-coil molecules were modified into acetate-based chiral rod-coil molecules, similar self-assembly results still can be obtained; suggesting that the amphiphilicity of the chiral rod-coil molecules is not critical for the formation of helical twists and its corresponding helicity.
    Furthermore, we observed a banded morphology in our molecular system under polarized light microscopy (PLM). The appearance of the banded texture is strongly dependent upon the alkoxyl chain length that determines the twisting power of self-assembled hierarchical superstructures with helical sense. The formation of banded spherulites is identified as quaternary helical morphology with a collection of the tertiary chiral superstructures (i.e., helical twists) so as to give regular extinction in PLM attributed to zero-birefringence effect. Consistent to the observation of helical morphologies, the occurrence of chiral smectic C (SmC*) phase can only be found in samples with enough alkoxyl chain length; suggesting the existence of strong correlation for morphological evolution from molecular level to macroscopic object with the formation of SmC*. A hypothetic model about the bilayer structure within the SmC* structure is given to elucidate the morphological evolution. Consequently, the self-assembly of the chiral amphiphiles with thermotropic liquid crystalline character represents the mechanism for the chiral information transfer in different length scales. The transfer of chiral information from molecular level to quaternary superstructure can be identified.
    Finally, an iron-rich spiral superstructures by taking advantage of the self-assembly of chiral Schiff-based rod-coil molecules is proposed for potential optical or mechanical applications. Chiral Schiff-based rod-coil molecules are end-capped with ferrocene moiety as chiral rod-coil organometallics (FC11). We described the self-assembly of FC11 that develops into ferrocene iron-rich spiral superstructure. The fundamentally new self-assembled FC11 spiral superstructure is a fabrication technology which acts as a template for the formation of twist ferrocene wires after pyrolysis treatment. In an attempt to give orientated template, the self-assembly of FC11 is performed under one Tesla external magnetic field due to its intrinsic dielectric constant. Such spiral metallic wires will contribute to the development of microelectronic organic-inorganic functional devices. The well-defined building blocks of ferrocene-based derivatives play an important role in dynamic responsive displays as well as in biological systems which stimulated by external fields.


    Contents List of Illustrations............................................................................... IV Chapter 1. Introduction 1.1 Supramolecular Chemistry and Self-assembly...................................1 1.2 Self-assembly of Chiral Molecules 1.2.1 Effect of chemical structure...............................................4 1.2.2 Varieties of self-assembled systems........................................11 1.3 Self-assembly of Sugar-based Molecules 1.3.1 Unsaturation of alkyl chain................................................12 1.3.2 Bolaamphiphiles............................................................15 1.3.3 Enantiomeric forms of sugar................................................18 1.4 Self-assembly of Rod-coil Molecules..........................................23 1.5 Helical Architectures in Different Length Scales 1.5.1 Helical conformations......................................................26 1.5.2 Helical superstructures....................................................26 1.5.3 Helical phases.......…....................................................28 1.6 Theory of Tilted Chiral Lipid Bilayers (TCLB) in Self-assembly 1.6.1 Intrinsic bending force....................................................31 1.6.2 Curvature elasticity.......................................................31 1.7 Organometallics..............................................................34 Chapter 2. Objectives............................................................35 Chapter 3. Experimental section 3.1 Materials....................................................................38 3.2 Specimen Preparation.........................................................42 3.3 Differential Scanning Calorimeter (DSC)......................................42 3.4 Polarized Light Microscopy (PLM).............................................43 3.5 Wide Angle X-ray Diffraction (WAXD)..........................................43 3.6 Transmission Electron Microscope (TEM).......................................44 3.7 Fourier Transform Infrared Spectroscopy (FTIR)...............................45 3.8 Field Emission Scanning Electron Microscopy (FE-SEM).........................45 3.9 Ultraviolet-Visible Spectrum (UV-vis) and Circular Dichroism (CD)............46 3.10 Molecular Simulation........................................................46 Chapter 4. Results and Discussion 4.1 Thermotropic Liquid Crystal Phase Behavior 4.1.1 DSC thermograms of chiral Schiff-based rod-coil amphiphiles................48 4.1.2 PLM morphologies of chiral Schiff-based rod-coil amphiphiles...............56 4.2 Induced Twisting in Self-assembly of Chiral Schiff-based Rod-Coil Amphiphiles 4.2.1 Effect of hydrogen bonding.................................................62 4.2.2 Induced twisting of helical twist..........................................65 4.3 Helical Twisting Power in Self-assembled Chiral Schiff-based Rod-coil Amphiphiles 4.3.1 Alkoxyl chain length effect................................................68 4.3.2 Identification of layered structure and structural imperfection............72 4.3.3 Variation of helical twisting power........................................84 4.4 Helicity Control in Self-assembly of Chiral Rod-coil Molecules 4.4.1 Self-assembled left- or right- handed helical twist........................90 4.4.2 Bulky chain end effect…...................................................92 4.5 Helical Morphologies of Thermotropic Liquid-Crystalline Chiral Schiff-based Rod-coil Amphiphiles 4.5.1 Self-assembled hierarchical superstructures................................97 4.5.2 Origin of banded spherulites...............................................99 4.6 Twist Ferrocene Wire from Self-assembly of Chiral Rod-coil Organometallics 4.6.1 Self-assembled morphology of chiral rod-coil organometallics..............106 4.6.2 Magnetic field stimuli on the self-assembled morphology...................112 Chapter 5. Conclusions..........................................................114 Chapter 6. References...........................................................118 Publications....................................................................131 Acknowledgments.................................................................132 List of Illustrations Chapter 1 Figure 1.1 A DF image of a helical lamellar crystal uses the partial (205) and (206) diffraction arcs. The circled parts of the diffraction arcs in the ED pattern are inserted in this Figure. Note that the (201) diffraction is not included in the electron diffraction circle, therefore, the (201) diffraction is extinction in this DF image.......................................................................................8 Figure 1.2 3D simulated model for the hexagonally packed helical nanostructures with uniplanar orientation……………….....10 Figure 1.3 SEM and TEM images of the 5~7 self-assembly in aqueous solutions. (a) 5 shows the twisted fiber structure with 50~200 nm widths and several micrometers of length. (b) 6 shows the left-handed coiled tube with 150~200 nm inner diameters and 20 nm of wall as the minor morphology, and (c) 6 shows the helical ribbon structures as the major morphology, showing the influence of double bonds on the final morphology of the self-assembly structures. (d) 7 displays the helical ribbon morphology with 80~100 nm of outer diameters as the minor morphology and (e) 7 displays the nanotubular structure as the major morphology with ca. 70 nm of inner diameters and a wall thickness of 20~30 nm………………………..….….14 Figure 1.4 (A and B) FE-SEM and (C and D) TEM images of the double-helical silica nanotube obtained from the mixed gel of 8 and 9 (1:1 w/w) after calcination, and (E) schematic representation of the double-helical structure of the silica nanotubes through SEM and TEM observations. a and b indicate two silica nanotubes from which the double helixes are constructed (parts B and D).……………………………15 Figure 1.5 Schematic illustration of the conformational and thermal phase behavior observed for bolaamphiphiles.………....….17 Figure 1.6 Interdigitated smectic A structure of the galactose derivative 13…………………………………………..………….……20 Figure 1.7 A columnar structure of the glucose derivative 12 formed in the lamellar phase due to the introduction of curvature into the system………………………………….....…………….21 Figure 1.8 Disordered rectangular columnar structure of the glucose derivative 12. The aliphatic tails of the molecules will interpenetrate from one column to the next…………….......22 Figure 1.9 Phase diagram for conformationally symmetric diblock melts. Phase are labeled L (lamellar), H (hexagonal cylinders), QIa3d (bicontinuous Ia3d cubic), QIm3m (bcc spheres), CPS (close-packed spheres), and DIS (disordered). Dashed lines denote extrapolated phase boundaries, and the dot denotes the mean-field critical point…………………………………….25 Figure 1.10 The molecular origin of helical morphology exists in the molecules assembly. The ψ degree responses for molecular bending that minimize the short range intermolecular interactions. The θ degree responses for molecular twisting that relative to the substitute group size.…..………...….….32 Figure 1.11 The cylindrical geometry has a radius r and length L. The molecular director d is tilted by both bending ψ degree with respect to the equator of the cylinder and twisting θ degree with respect to the curved surface normal.............................33 Figure 1.12 Illustration of the transformation structure from the vesicle to helical morphology accords to the local tilt direction....…...33 Figure 4.1 Thermograms of LC11 in different heating and cooling rates…………………………………………………………54 Figure 4.2 Thermograms of LC7, LC9, LC11, and LC13 in 10 oC/min cooling (lower part) and heating (upper part) scans.……….54 Figure 4.3 Thermograms of LC7 were performed in different heating rate.…………………………………………………………55 Figure 4.4 PLM image of LC11 shows the SmA phase on the glass substrate at 200oC from isotropic melt at 10 oC/min cooling……………………………………………………...58 Figure 4.5 PLM images of LC11 at (a) 100 oC, and (b) 140 oC in heating procedure after continuous cooling from isotropic melt at 40 oC/min cooling…...…………………………………………59 Figure 4.6 Thermogram of crystallization studies were performed in different temperature through 55 oC to 135 oC by LC11. A crystallization window was found between 65 oC and 130 oC, and the maximum crystallization rate temperature was identified at 95 oC…………..…..………………..…………59 Figure 4.7 PLM morphologies of (a) LC7, (b) LC9, (c) LC11, and (d) LC13 at 125 oC from isotropic melt at 2.5 oC/min cooling (Alkoxyl chain length dependence).…………………….….60 Figure 4.8 PLM morphologies of (a) LC14, (b) LC15, (c) LC16, and (d) LC22 at 125 °C from isotropic melt at 2.5 °C/min cooling (alkoxyl chain length dependence). Helical superstructures with helical sense for the self-assembly of the chiral amphilphiles can be found once the alkoxyl chain length reaches suitable alkoxyl chain size where the occurrence of SmC* phase can be found so as to lead the formation of banded texture under PLM. The coincidence with respect to the alkoxyl chain length effect on self-assembled hierarchical structure (i.e., the tertiary structure) and the banded texture (i.e., the quaternary structure) suggests the existence of strong correlation for morphological evolution from molecular level to macroscopic object with the formation of SmC*. As shown, the banded textures of LC14 resulting from the formation of SmC* phase can be clearly identified whereas the banded texture could not be found in LC22. For LC15 and LC 16, the banded textures could still be recognized. The change is attributed to the decrease in HTP……………………………71 Figure 4.9 The time-resolved UV-vis spectra of the LC11 self-assembly in THF/water = 1/10. The absorption intensity at 346nm would decrease with time…………………………………..63 Figure 4.10 FT-IR spectra of LC11 in (a) pure THF and (b) THF/H2O solution………………………………………………….….64 Figure 4.11 Corresponding (a) UV-vis spectra and (b) CD results of 4-NADG in THF (1) or water (2), respectively………….…66 Figure 4.12 (a) UV-vis spectra of chiral Schiff-based rod-coil amphiphiles in THF. (b) The CD results of chiral Schiff-based rod-coil amphiphiles in THF………………………………………...67 Figure 4.13 CD spectra of LC18, LC22, and LC30 in THF solution (concentration = 1 x 10-4M)…………………………...……67 Figure 4.14 FE-SEM (left) and TEM (right) micrographs of chiral Schiff-based rod-coil amphiphiles (a) LC7; (b) LC9; (c) LC11; (d) LC13…………………………………………….70 Figure 4.15 TEM images of hierarchical superstructures of (a) LC14, (b) LC16, (c) LC18, (d) LC22 and (e) LC30 self-assembling from the solution at ambient temperature………………………..71 Figure 4.16 The dependence of HTP on the aliphatic chain length. The arrow in illustration indicates the maximum HTP of LC13..71 Figure 4.17 X-ray scattering experiments of LC11 at different temperature through cooling.………………………………………….....77 Figure 4.18 The change of long period spacing determined by the primary peak of the X-ray scattering results. Data points of LC13 (□), LC11(●), LC9(■) and LC7(○) are based on the d-spacing values from X-ray scattering at various temperatures, respectively. The dark zone corresponds to the phase transition between the SmA and the SmC* phase……………………..78 Figure 4.19 SAED pattern for isotropic melt-crystallized LC11 taken from high crystalline region along the [00l] zone………………..78 Figure 4.20 High-resolution TEM image of LC11 crystallized at 125 oC from the isotropic melt and then gradually cooled to ambient temperature.………………………………………………...79 Figure 4.21 Tentative G-T diagram for (a) LC7 and (b) LC11. The SmC* will not be present in LC7.……………………....................79 Figure 4.22 (a) One-dimensional WAXD profiles of sugar appended Schiff base chiral rod-coil amphiphiles. (b) Data points of long period spacing determined by the primary peak of the X-ray scattering results. (c) The dependence of the size of layered structure on the alkoxyl chain length determined from the half-height width of primary peak (001) through Scherrer equation.................................................................................80 Figure 4.23 TEM images of LC18 (a) and LC30 (b). Samples were stained with RuO4. Bright domains correspond to alkoxyl chain regions. Layered size of ~6 nm and ~9 nm for LC18 and LC30 can be identified respectively…………………...80 Figure 4.24 Left: FTIR spectra of LC7, LC13, LC30 at room temperature normalized by benzene ring peak at 1605 cm-1. Right: the deconvolution of the overlapping vibration bands between 2800 and 3000 cm-1. LC7: ν(OH) ~ 3391cm-1, νas(CH2) ~ 2917cm-1, νs(CH2) ~ 2848cm-1; LC13:ν(OH) ~ 3321cm-1, νas(CH2) ~ 2923cm-1, νs(CH2) ~ 2853cm-1; and LC30:ν(OH) ~ 3314cm-1, νas(CH2) ~ 2925cm-1, νs(CH2) ~ 2857cm-1………81 Figure 4.25 Temperature dependence of FT-IR spectra for LC13 obtained during cooling. Similar spectroscopic results were also found in LC7 and LC30…………………………………………...82 Figure 4.26 FT-IR spectra of LC7 were recorded at room temperature. The deconvolution of the overlapping vibration bands between 2800 and 3000 cm-1 are separated into eight peaks using the PeakFit peak separation program. Gaussian and Lorentz functions were used to obtain the best fit...………..82 Figure 4.27 FT-IR spectra of LC13 were recorded at room temperature. The deconvolution of the overlapping vibration bands between 2800 and 3000 cm-1 are separated into eight peaks using the PeakFit peak separation program. Gaussian and Lorentz functions were used to obtain the best fit……….....83 Figure 4.28 FT-IR spectra of LC30 were recorded at room temperature. The deconvolution of the overlapping vibration bands between 2800 and 3000 cm-1 are separated into eight peaks using the PeakFit peak separation program. Gaussian and Lorentz functions were used to obtain the best fit……….....83 Figure 4.29 Molecular simulation results. (a) Single chiral Schiff-based rod-coil amphiphiles. (b) Aggregate morphology in the self-assembly system………………...…………………..…88 Figure 4.30 Twisting and bending chiral Schiff-based rod-coil amphiphiles of compound LC11…………………………...88 Figure 4.31 Hypothetical model of the alkoxyl chain length effect on self-assembled ordered layered structures……………….....89 Figure 4.32 Polarized light microscopy image of LC30 obtained at room temperature. Similar result can be found while at 125oC…..89 Figure 4.33 TEM images of hierarchical superstructures self-assembling from the aqueous solution of (a) LC11, (b) LC11C, (c) K11, and (d) K11E with Pt shadowing deposition. The arrow shows one of the successive groove areas of the helical morphology…………………………………………………91 Figure 4.34 UV-vis and CD spectras of LC11 (black), LC11C (red), K11 (green) and K11E (blue) in THF solution…………………..95 Figure 4.35 One-dimensional X-ray scattering profiles of the chiral rod-coil molecules LC11, LC11C, K11, and K11E were examined. The layer-to-layer d-spacing is determined according to the primary scattering peak of X-ray experimental results…………………………………….…..95 Figure 4.36 Molecular simulation results of chiral rod-coil molecules, LC11, LC11C, K11, and K11E in the self-assembly system………………………………………………………96 Figure 4.37 Illustration of the molecular packing for the chiral rod-coil molecules in the hierarchical superstructures with Gaussian saddle-like curvature: (a) LC11 and (b) LC11C……………96 Figure 4.38 TEM images of hierarchical superstructures in which samples crystallized at 125 oC from the isotropic melt and then gradually cooled to ambient temperature: (a) LC7, (b) LC9, (c) LC11, and (d) LC13…………………….……..………..98 Figure 4.39 Schematic illustration of LC11 for different LC phases in the self-assembly: (a) Secondary structure via parallel molecular packing; (b) SmA phase; (c) SmC* phase. The gray line indicates the SmC* phase along the single crystal axis with helix sense………………………………………...……….103 Figure 4.40 PLM images of LC11 (a) at 125 oC (positive-birefringence spherulite) and (b) at 25 oC (negative-birefringence spherulite). (c) Indicatrix rotation of SmC* phase along the helix axis and the d-spacing change affect by temperature………….……………….………...………….104 Figure 4.41 (a) Diagram of a biaxial indicatrix (refractive index ellipsoid), showing the refractive index nc>nb>na of chiral Schiff-based rod-coil amphiphiles. (b) Biaxial indicatrix tilt makes the decrease of nc to nc*. (c) Intersection of the indicatrix and of the wave plane. Zero-birefringence of indicatrix rotation produces dark line of banded spherulites in PLM..…………………….………………………………..105 Figure 4.42 FE-SEM image of fractured banded texture at room temperature.…...……..........................................................105 Figure 4.43 DSC thermograms of FC11 are observed at various scan rates as indicated………………………………………………..110 Figure 4.44 X-ray scattering profiles of FC11 examined at different temperatures cooling from isotropic melt…………………110 Figure 4.45 TEM micrographs of self-assembled FC11 from solution at ambient temperature: (a) without; (b) with Pt shadowing. The dark regions in (a) correspond to ferrocene microdomains. Morphology in (b) shows the topography of self-assembled texture. (c) Schematic illustration of the formation of hierarchical superstructure from the self-assembly of chiral rod-coil organometallics…………………………….…….111 Figure 4.46 Corresponding (a) UV-vis spectra and (b) CD spectra is shown for chiral rod-coil organometallics FC11 in THF solution…………………………………..………………..111 Figure 4.47 TEM image is obtained from the self-assembly of chiral rod-coil organometallics FC11 after alignment with respect to magnetic filed……………………………………………..113 Figure 4.48 TEM micrograph from templates of self-assembled FC11 after pyrolysis……………………………………………113 Scheme 1. Synthetic routes………………………………………………40 Scheme 2. Chemical structures of chiral rod-coil molecules: (a) LC11C, (b) K11, and (c) K11E. ………………………………………………………41 Scheme 3. Chemical structure of chiral rod-coil organometallics, FC11…41 Table 1. Thermal analyses of chiral Schiff-based rod-coil amphiphiles studied…………………………………………………………………52 Table 2. The enthalpy of the phase transitions of chiral Schiff-based rod-coil amphiphiles studied……………………………………………53

    References
    (1) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-2421.
    (2) (a) Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, Germany, 1995. (b) Lehn, J.-M. Science 2002, 295, 2400-2409.
    (3) Deng, T.; Chenb,C.; Honekerb,C.; Thomas, E. L. Polymer 2003, 44, 6549-6553.
    (4) Muthukumar, M.; Ober, C. K., Thomas, E. L. Science 2002, 277, 1225-1232.
    (5) Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. J. Mater. Chem. 2003, 13, 2661-2670.
    (6) Schenning, A. P. H. J.; Herrikhuyzen, J. V.; Jonkheijm, P.; Chen, Z.; Wuerthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 10252-10253.
    (7) Kato, T.; Matsuoka, T.; Nishii, M.; Kamikawa, Y.; Kanie, K.; Nishimura, T.; Yashima, E.; Ujiie, S. Angew. Chem. Int. Ed. 2004, 43, 1969-1972.
    (8) Barboiu, M.; Vaughan, G.; Kyritsakas, N.; Lehn, J.-M. Chem. Eur. J. 2003, 9, 763-769.
    (9) Kato, T. Science 2002, 295, 2414-2418.
    (10) Kanie, K.; Yasuda, T.; Ujiie, S.; Kato, T. Chem. Commun. 2000, 19, 1899-1900.
    (11) Kanie, K.; Nishii, M.; Yasuda, T.; Taki, T.; Ujiie, S.; Kato, T. J. Mater. Chem., 2001, 11, 2875–2886.
    (12) Kunitake, T.; Okahata, Y. J. Am. Chem. Soc. 1980, 102, 549.
    (13) Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.; Takarabe, K. J. Am. Chem. Soc. 1981, 103, 5401.
    (14) Kunitake, T. Angew. Chem., Int. Ed. Engl. 1992, 31, 709.
    (15) Pisula, W.; Kastler, M.; Wasserfallen, D.; Pakula, T.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 8074-8075 and references therein.
    (16) Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427-1430.
    (17) Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039-4070.
    (18) Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289-8294.
    (19) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785-788.
    (20) Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480-1486.
    (21) Sakurai, S.-I.; Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromolecules 2003, 36, 9670-9674.
    (22) Goto, H; Okamoto, Y; Yashima, E. Macromolecules 2002, 35, 4590-4601.
    (23) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345-6359.
    (24) Yashima, E.; Maeda, K.; Okamoto, Y. Nature 1999, 99, 449-451.
    (25) Maeda, K.; Morino, K.; Yashima, E. J. Polym., Sci. Part A: Polym. Chem. 2003, 41, 3625–3631.
    (26) Yashima, E.; Maeda, K.; Nishimura T. Chem. Eur. J. 2004, 10, 42-51.
    (27) Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1996, 118, 9800.
    (28) Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromolecules 2000, 33, 4616.
    (29) Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441.
    (30) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793-1796.
    (31) Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 2643-2644.
    (32) Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134-6135.
    (33) Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew.Chem., Int. Ed. 2000, 39, 228-230.
    (34) Brunsveld, L.; Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000, 2, 1525-1528.
    (35) Fuhrhop J.H,; Schnieder P,; Boekema E,; Helfrich W. J. Am. Chem. Soc. 1988, 110, 2861-2867.
    (36) Brunsveld, L.; Zhang, H.; Vekemans, J. A. J. M.; Meijer, E.W. J. Am. Chem. Soc. 2000, 122, 6175-6182.
    (37) Brunsveld, L.; Lohmeijer, B. G. G.; Vekemans, J. A. J. M.; Meijer, E.W. Chem. Commun. 2000, 23, 2305-2306.
    (38) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E.W. Nature 2000, 407, 167-170.
    (39) Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E.W. J. Am. Chem. Soc. 2001, 123, 409-416.
    (40) Jonkheim, P.; Hoeben, F. J. M.; Kleppinger, R.; Herrikhuyzen, J. V.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 15941-15949.
    (41) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071-4097.
    (42) Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. De; Schenning, A. P. H. J.; Schryver, F. C. De; Meijer, E.W. Angew. Chem. Int. Ed. 2004, 43, 74-78.
    (43) Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E.W. Proc. Natl. Acad. Sci. USA 2002, 99, 4977-4982.
    (44) Yoon, Y.; Zhang, A.; Ho, R.-M.; Cheng, S. Z. D.; Percec, V.;Chu, P. Macromolecules 1995, 29, 294-305.
    (45) Yoon, Y.; Ho, R.-M.; Moon, B.; Kim, D.; McCreight, K. W.; Li, F.-M.; Harris, F. W.; Cheng, S. Z. D.; Percec, V.; Chu, P. Macromolecules 1996, 29, 3421-3431.
    (46) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72-79.
    (47) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524-527.
    (48) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Ge, J. J.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phy. Rev. B. 1999, 60, 12675-12680.
    (49) Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Yan, D.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558-4561.
    (50) Weng, X.; Li, C. Y.; Jin, S.; Zhang, D.; Zhang, J. Z.; Bai, F.; Harris, F. W.; Cheng, S. Z. D. Macromolecules 2002, 35, 9678-9686.
    (51) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C. C.; Ko, B. T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704-2705.
    (52) Ho, R.-M.; Chiang, Y.-W.; Lin, S.-C.; Chen, C.-K. accpeted by Prog. Polym. Sci. 2010.
    (53) (a) Fuhrhop, J. H.; Helfrich, W. Chem. Rev. 1993, 93, 1565-1582. (b) Spector, M. S.; Price, R. R.; Schnur, J. M. Adv. Mater. 1999, 11, 337-340. (c) Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. J. Am. Chem. Soc. 2002, 124, 10674-10675. (d) Goodby, J. W.; Waugh, M. A.; Stein, S. M.; Chin, E.; Pindak, R.; Patel, J. S. J. Am. Chem. Soc. 1989, 111, 8119-8125.
    (54) (a) Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudson, S. D.; Duan, H. Nature 1998, 419, 384-387. (b) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-768.
    (55) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684-1688. (b) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am. Chem. Soc. 2001, 123, 4105-4106.
    (56) Li, C. Y.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Calhoun, B. H.; Harris, F. W.; Chien, L.-C.; Lotz, B. J. Am. Chem. Soc. 2001, 123, 2462-2463.
    (57) (a) Chiang, Y.-W.; Ho, R.-M.; Thomas, E. L.; Burger, C.; Hsiao, B. S. Adv. Funct. Mater. 2009, 19, 448-459. (b) Chiang, Y.-W.; Ho, R.-M.; Ko, B.-T.; Lin, C.-C. Angew. Chem. Int. Ed. 2005, 44, 7969-7972. (c) Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Ko, B.-T.; Lin, C.-C. Adv. Mater. 2006, 18, 2355-2358.
    (58) Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J., MacKintosh, F. C. Nature 1999, 399, 566-569.
    (59) Thunemann, A. F.; Kubowicz, S.; Burger, C.; Watson, M. D.; Tchebotareva, N.; Mullen, K. J. Am. Chem. Soc. 2003, 125, 352-356.
    (60) Spector, M. S.; Selinger, J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493-3500.
    (61) Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328-4334.
    (62) (a) Van Doren, H. A.; Smits, E.; Pestman, J. M.; Engberts, J. B. F. N.; Kellogg, R. M. Chem. Soc. Rev., 2000, 29, 183-199. (b) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903-1907. (c) Jung, J. H.; Yoshida, K.; Shimizu, T. Langmuir 2002, 18, 8724-8727.
    (63) (a) Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201-1217. (b) John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715-718. (c) John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5495-5500.
    (64) Shimizu, T.; Jung, J. H.; Yoshida, K. Langmuir 2002, 18, 8724-8727.
    (65) Masuda, M.; Vill, V.; Shimizu, T. J. Am. Chem. Soc. 2002, 122, 12327-12333.
    (66) Laurent, N.; Lafon, D.; Dumoulin, F.; Boullanger, P.; Mackenzie, G.; Kouwer, P. H. J.; Goodby, J. W. J. Am. Chem. Soc. 2003, 125, 15499-15506.
    (67) Hamley, I. W. The Physics of Block Copolymers; VCH: Oxford University, New York, 1998.
    (68) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525-557.
    (69) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091-1098.
    (70) Klok, H.-A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217-1229.
    (71) (a) Ruokolainen, J.; Tanner, J.; Ikkala, O.; ten Brinke, G.; Thomas, E. L. Macromolecules 1998, 31, 3532-3536. (b) Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557-560. (c) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777-781. (d) Ikkala, O.; ten Brinke, G. Science 2002, 295, 2407-2409. (e) Halperin, A. Macromolecules 1990, 23, 2724-2731. (f) Lee, M.; Cho, B.-K.; Jang, Y.-G.; Zin, W.-C. J. Am. Chem. Soc. 2000, 122, 7449-7455. (g) Lee, M.; Yoo, Y.-S. J. Mater. Chem. 2002, 12, 2161-2168. (h) Ryu, J.-H.; Oh, N.-K.; Zin, W.-C.; Lee, M J. Am. Chem. Soc. 2004, 126, 3551-3558. (i) Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G.-P. Science 1996, 273, 343-346. (j) Osuji, C.; Chao, C.-Y.; Bita, I.; Ober, C. K.; Thomas, E. L. Adv. Func. Mater. 2002, 12, 735-758. (k) Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705-1709. (l) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Kesser, M.; Amstutz, A. Science 1997, 276, 384-389. (m) Stupp, S. I.; Braun, P. V. Science 1997, 277, 1242-1248. (n) Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I. Science 1999, 283, 523-527. (o) Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Mullen, K.; Pakula, T. J. Am. Chem. Soc. 2003, 125, 1682-1683. (p) Thunemann, A. F.; Ruppelt, D.; Ito, S.; Mullen, K. J. Mater. Chem. 1999, 9, 1055-1057. (q) Thunemann, A. F.; Ruppelt, D.; Burger, C.; Mullen, K. J. Mater. Chem. 2000, 10, 1325-1329. (r) Watson, M. D.; Jackel, F.; Severin, N.; Rabe, J. P.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 1402-1407. (s) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684-689. (t) Lee, M.; Kim, J. W.; Peleshanko, S.; Larson, K.; Yoo, Y. S.; Vaknin, D.; Markutsya, S.; Tsukruk, V. V. J. Am. Chem. Soc. 2002, 124, 9121-9128. (u) Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481-1483.
    (72) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893-4011.
    (73) Kitzerow, H.-S.; Bahr, C. Chirality in liquid crystals, VCH: Springer, New York, 2001.
    (74) (a) Kuball, H. G.; Bruning, H.; Muller, T. J. Mater. Chem. 1995, 5, 2167-2174. (b) Kuball, H. G.; Bruning, H. Chirality 1997, 9, 407-423. (c) Gottarelli, G.; Spada, G. P. Materials-Chirality: Volume 24 of Topics in Stereochemistry; Green, M. M.; Nolte, R. J. M.; Meijer, E. W. Eds.; Wiley: Hoboken, NJ, 2003.
    (75) (a) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789-1816. (b) Ichimura, K. Chem.Rev. 2000, 100, 1847-1874.
    (76) (a) Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480-1486. (b) Hasegawa, T.; Morino, K.; Tanaka, Y.; Katagiri, H.; Furusho, Y.; Yashima, E. Macromolecules 2006, 39, 482-488. (c) Kim, H.-J.; Lee, E.; Park, H.-S.; Lee, M. J. Am. Chem. Soc. 2007, 129, 10994-10995.
    (77) (a) Lifson, S.; Andreola, C.; Peterson, N. C.; Green, M. M. J. Am. Chem. Soc. 1989, 111, 8850-8858. (b) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. USA 2001, 98, 11857-11862.
    (78) Sato, T.; Sato, Y.; Umemura, Y.; Teramoto, A.; Nagamura, Y.; Wagner, J.; Weng, D.; Okamoto, Y.; Hatada, K.; Green, M. M. Macromolecules 1993, 26, 4551-4559.
    (79) (a) Emelyanenko, A. V.; Osipov, M. A.; Dunmur, D. A. Phys. Rev. E 2000, 62, 2340-2352. (b) Earl, D. J.; Wilson, M. R. J. Chem. Phys. 2003, 119, 10280-10288. (c) Neal, M. P.; Solymosi, M.; Wilson, M. R.; Earl, D. J. J. Chem. Phys. 2003, 119, 3567-3573. (d) Kamberaj, H.; Osipov, M. A.; Low, R. J.; Neal, M. P. Molec. Phys. 2004, 102, 431-446.
    (80) Boettcher, C.; Schade, B.; Fuhrhop J.-H. Langmuir 2001, 17, 873-877.
    (81) Messmore, B. W.; Sukerkar, P. A.; Stupp, S. I. J. Am. Chem. Soc. 2005, 127, 7992-7993.
    (82) (a) Green, M. M.; Reidy, M. P. J. Am. Chem. Soc. 1989, 111, 6452-6454. (b) Cheon, K.-S.; Selinger, J. V.; Green, M. M. Angew. Chem. Int. Ed. 2000, 39, 1482-1485. (c) Green, M. M.; Cheon, K.-S.; Yang, S.-Y.; Park, J. W.; Swansburg, S.; Liu W. Acc. Chem. Res. 2001, 34, 672-680.
    (83) (a) Huck, N. P. M.; Jager, W. F.; Lange, B.; Feringa, B. L. Science 1996, 273, 1686-1688. (b) Delden, R. A.; Gelder, M. B.; Huck, N. P. M.; Feringa, B. L. Adv. Funct. Mater. 2003, 13, 319-324. (c) Ohira, A.; Okoshi, K.; Fujiki, M.; Kunitake, M.; Naito, M.; Hagihara, T. Adv. Mater. 2004, 18, 1645-1650.
    (84) (a) Inai, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.; Yamashita, M. J. Am. Chem. Soc. 2000, 122, 11731-11732. (b) Inai, Y.; Ishida, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T. J. Am. Chem. Soc. 2002, 124, 2466-2473.
    (85) Li, L.-s.; Jiang, H.; Messmore, B. W.; Bull, S. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2007, 46, 5873-5876.
    (86) (a) Demus, D., Goodby, J. W., Gray, G. W., Spiess, H.-W., Vill, V., Eds. Handbook of Liquid Crystals; Wiley-VCH: Weinheim, 1998. (b) Kitzerow, H. -S.; Bahr, C. Chirality in liquid crystals; VCH: Springer, New York, 2001.
    (87) Helfrich, W.; Prost,J. Phys. Rev. A 1988, 38, 3065-3068.
    (88) (a) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. Lett. 1990, 65, 1679-1682. (b) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. A 1991, 43, 6826-6836.
    (89) Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71, 4091-4094.
    (90) (a) Selinger, J. V.; MacKintosh, F. C.; Schnur, J. M. Phys. Rev. E 1996, 53, 3804-3818. (b) Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208-11216. (c) Nandi, N.; Bagchi, B. J. Phys. Chem. A 1997, 101, 1343-1351.
    (91) (a) Caffrey, M.; Hogan, J; Rudolph, A. S. Biochemistry 1991, 30, 2134-2146. (b) Caffrey, M.; Cheng, A. Curr. Opin. Struct. Biol. 1995, 5, 548-555.
    (92) Staveren, D. R.; Metzler-Nolte, N. Chem. Rev. 2004, 104, 5931-5985; b) Bellas, V.; Rehahn,M. Angew. Chem. Int. Ed. 2007, 46, 5082-5104.
    (93) (a) Massey, J. A.; Temple, K.; Cao, L.; Rharbi, Y.; Raez, J.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2000, 122, 11577-11584. b) Skibar, W.; Kopacka, H.; Wurst, K.; Salzmann, C.; Ongania, K.-H.; Biani, F. F.; Zanello, P.; Bildstein, B. Organometallics 2004, 23, 1024-1041. c) Wang, H.; Winnik, M. A.; Manners, I. Macromolecules 2007, 40, 3784-3789; d) Soto, A. P.; Manners, I. Macromolecules 2009, 42, 40-42.
    (94) (a) Lammertink, R. G. H.; Hempenius, M. A.; Enk, J. E. v. d.; Chan, V. Z.-H.; Thomas, E. L.; Vancso, G. J. Adv. Mater. 2000, 12, 98-103. b) Temple, K.; Kulbaba, K.; Power-Billard, K. N.; Manners, I.; Leach, K. A.; Xu, T.; Russell, T. P.; Hawker, C. J. Adv. Mater. 2003, 15, 297-300. c) Clendenning, S. B.; Han, S.; Coombs, N.; Paquet, C.; Rayat, M. S.; Grozea, D.; Brodersen, P. M.; Sodhi, R. N. S.; Yip, C. M.; Lu, Z.-H.; Manners, I. Adv. Mater. 2004, 16, 291-296. d) Hinderling, C.; Keles, Y.; Stöckli, T.; Knapp, H. F.; Arcos, T.; Oelhafen, P.; Korczagin, I.; Hempenius, M. A.; Vancso, G. J.; Pugin, R.; Heinzelmann, H. Adv. Mater. 2004, 16, 876-879.
    (95) (a) Sung, C. H.; Kung, L. R.; Hsu, C. S.; Lin, T.-F.; Ho, R.-M. Chem. Mater. 2006, 18, 352-359. (b) Lin, T.-F.; Ho, R.-M.; Sung, C. H.; Hsu, C. S. Chem. Mater. 2006, 18, 5510-5519. (c) Lin, T.-F.; Ho, R.-M.; Sung, C. H.; Hsu, C. S. Chem. Mater. 2008, 18, 1404-1409. (d) Lin, T.-F.; Ho, R.-M.; Sung, C. H.; Ho, M.-S.; Hsu, C. S. Chem. Eur. J. 2010, 16, 7385-7388. All the synthetic works were done by Dr. Sung, C. H. and Dr. Ho, M.-S. at National Chiao Tung University, and we thank for Prof. Hsu kindly promotion of our cooperation study.
    (96) Percec, V.; Keller, A. Macromolecules 1990, 23, 4347-4350.
    (97) (a) Malthete, J; Jacques, J; Tinh, N. H.; Destrade, C. Nature 1982, 298, 46-48. (b) Kajitani, T.; Okoshi, K.; Sakurai, S.-I.; Kumaki, J.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 708-709. (c) Goto, H.; Akagi, K. Chem. Mater. 2006, 18, 255-262.
    (98) (a) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 5th ed.; John Wiley: New York, 1991. (b) Philip, D. J.; Stoddart, F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196.
    (99) (a) Ou-Yang, Z.-C.; Liu, J.-X.; Yu-Zhang, X. Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases World Scientific Publishing, Singapore, 1999. (b) Selinger, J. V.; Wang, Z.-G.; Bruinsma, R. F.; Knobler, C. M. Phys. Rev. Lett. 1993, 70, 1139-1142. (c) Selinger, R. L. B.; Selinger, J. V.; Malanoski, A. P.; Schnur, J. M. Phys. Rev. Let. 2004, 93, 158103-1-158103-4.
    (100) (a) Harkins, W. D. Morgan, J. W. Chemistry: Harkins and Beeman 1925, 11, 631-637. (b) Kabalnov, A.; Wennerström, H. Langmuir 1996, 12, 276-292.
    (101) Wade, L. G. Organic Chemistry Pearson Education, Inc., New Jersey, 2003.
    (102) Samir, M. A. S. A.; Alloin, F.; Dufresne, A. Biomacromolecules 2005, 6, 612-626.
    (103) (a) Jeong, K.-U.; Jin, S.; Ge, J. J.; Knapp, B. S.; Graham, M. J.; Ruan, J.; Guo, M.; Xiong, H. ; Harris, F. W.; Cheng, S. Z. D. Chem. Mater. 2005, 17, 2852-2865. (b) Jeong, K.-U.; Knapp, B. S. ; Ge, J. J.; Jin, S.; Graham, M. J.; Harris, F. W.; Cheng, S. Z. D. Chem. Mater. 2006, 18, 680-690. (c) Lin, S.-C.; Lin, T.-F.; Ho, R.-M.; Chang, C.-Y.; Hsu, C.-S. Adv. Funct. Mater. 2008, 18, 3386-3394 and references there in.
    (104) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M.; Science 1999, 284, 785-788.
    (105) Wang, X.; Liu, K.; Arsenault, A. C.; Rider, D. A.; Ozin, G. A.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2007, 129, 5630-5639.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE